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Abstract

Games have been an area of study for computer science and artificial intelligence ever since the first com-

puters were created. They not only provide us with a means of challenging our mental prowess alone and

against other players but have also been successfully used as case studies for how computers may be taught

to emulate human thought and intelligence. By studying games, and proving properties about them, com-

puter scientists have been able to develop theories and techniques which have been subsequently used for

other types of systems.

Another, highly studied field of computer science is system verification. System verification goes beyond

the normal validation techniques which prove only that a system is fit for its job. Verification makes sure

that the system at hand satisfies its requirements fully by making sure that there are no hidden faults which

validation techniques such as testing and simulation may not detect. To do so verification techniques make

a thorough and complete search of the system and ensure that is bullet-proof as far as its requirements

demand and can hence handle any situation it is required to without breaking down.

These two fields of study have been sometimes combined together so as to prove a number of interesting,

and sometimes surprising, properties about games. Since verification is a complete way to check a system,

analysing games using its techniques proves properties about the latter which cannot be contested since they

follow a rigorous proof-based approach. In our study we are interested in analysing how an automatic and

relatively recently developed verification technique called Model Checking fares when attempting to verify

properties about games as has been done before with other more established verification techniques.

Our study will first focus on model checking itself: its steps, the structures utilised such as Kripke structures

and binary decision diagrams, the logics involved such as CTL and µ-calculus temporal logics and the

algorithms employed for automatic verification. The next part of the study will then focus on how the

theory of model checking may be put to use for games themselves. Finally, we will consider two simple

but important case studies: Tictactoe and Connect Four and use these to show how model checking can

prove properties about these games by verifying them by means of two model checkers: SMV and µcke. In

parallel to this we will see which of the two mentioned temporal logics is more suitable for describing game

properties and also obtain an indication of model checking’s ability to scale up for games with large board

sizes.
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CHAPTER 1

INTRODUCTION

A journey of a thousand miles begins with a single step.

Lao-tzu

1.1 Overview

Games have been an area of study for computer science and artificial intelligence ever since the

first computers were created. They not only provide us with a means of challenging our mental

prowess alone and against other players but have also been successfully used as case studies for

how computers may be taught to emulate human thought and intelligence. By studying games,

and proving properties about them, computer scientists have been able to develop theories and

techniques which have been subsequently used for other types of systems.

Another, highly studied field of computer science is system verification. System verification goes

beyond the normal validation techniques which prove only that a system is fit for its job. Verifica-

tion makes sure that the system at hand satisfies its requirements fully by making sure that there

are no hidden faults which validation techniques such as testing and simulation may not detect. To

do so verification techniques make a thorough and complete search of the system and ensure that

is bullet-proof as far as its requirements demand and can hence handle any situation it is required

to without breaking down.

These two fields of study have been sometimes combined together so as to prove a number of

interesting, and sometimes surprising, properties about games. Since verification is a complete



1.2 Aims and Objectives 2

way to check a system, analysing games using its techniques proves properties about the latter

which cannot be contested since they follow a rigours proof-based approach. In our study we are

interested in analysing how an automatic and relatively recently developed verification technique

called Model Checking fares when attempting to verify properties about games as has been done

before with other more established verification techniques.

1.2 Aims and Objectives

As just mentioned, our main aim is to use model checking with games and hence utilise this veri-

fication technique to see if we can prove properties about them. To do so we will first see how the

model checking steps may be applied to games. This involves three stages each of which demand-

ing the application of various techniques to game systems, as we shall see in the next chapter. An

integral part of the above aim is the use of what are known as temporal logics. Since these logics

come in different flavours we have selected two likely candidates called CTL and µ-calculus which

we will make use of. We wish to compare and contrast these two logics and see which of these is

more suited for model checking games.

After having seen how model checking may be adapted for games, we will make use of two games

as case studies: Tictactoe and Connect Four. These simple games should allow us to have an insight

on how model checking works with games without us being lost into the games’ intricacies. As a

final aim we will also create a model generator which generates game models for increasing board

sizes of these two games. The code generated will allow us to model check tictactoe and connect

four with two model checking tools called SMV and µcke. Moreover by model checking these

games for different board sizes we will get an indication of model checking’s ability to scale up to

games with larger boards.

1.3 Document Structure

This document is divided into ten chapters and one appendix. Chapter 2 gives an overview on

model checking and reviews the literature which served as a source to our knowledge on model

checking. Chapters 3, 4 and 5 are theoretical and consist of the background theory required to
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understand how model checking works in detail by going through each of its steps and discussing

any structures, logics, techniques and tools used. Chapter 6 explains how game systems may be

verified using the techniques mentioned in the earlier chapters. We will see how a game may be

a viewed as a system which requires verification and how this view allows us to write and prove

properties about games. Chapters 7 and 8 are case studies for the aforementioned tictactoe and

connect four games respectively. Here we show all the steps required to model check these two

games and what properties were used to verify them. We also present the verification results we

obtained for different board sizes of these two games in their respective chapters. We also propose

a more compact encoding for connect four which allows larger board to be verified. In Chapter 9

we discuss and evaluate the use of model checking for games in the light of the results we obtained

by modelling tictactoe and connect four. Furthermore we relate our work on games by discussing

various other techniques which have been used to verify properties about games. Chapter 10

discusses some future research prospects which may emerge from our work and gives our final

conclusions. Finally, Appendix A is the user manual for the model generating tool used to obtain

different board-sized models of the two games.



CHAPTER 2

LITERATURE REVIEW

He who controls the present, controls the past.

He who controls the past, controls the future.

George Orwell

2.1 Overview

Model Checking is a type of formal automatic system verification technique whereby a system is

considered to be correct if it satisfies a set of requirements. To achieve this, a formal model based

on the system is constructed and it is checked to see whether it meets the required specification

criteria to make it correct, subsequently proving or disproving the system itself. The checking part,

where the specification criteria are checked on the model, is done by a number of algorithms which

automatically check the requirements on the model of the system to see if they are satisfied.

In this chapter we present the main principles behind model checking and also to provide a brief

description of the model checking process itself and its three stages: modelling, specification and

verification. We will discuss what each step entails in the overall process, introduce two types of

model checking, known as enumerative model checking and symbolic model checking and explain the

relationship between them.
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2.2 Introduction

Computer hardware and software form an integral part of our daily lives. They are put to countless

uses: networking, air traffic control systems, medical equipment, e-commerce, military equipment

and so on. Most of these systems require that both the hardware and software components of

the system are reliable and that if possible they never fail to produce the required and expected

behaviour they were developed to carry out. Moreover, reliability becomes immensely critical

when human lives are involved. Unfortunately, we have witnessed many cases where either a

software or a hardware failure has led to a substantial financial loss or even loss of lives.

Problems in both the hardware and software of the Therac-25 Radiation Therapy Machine has

resulted in six cases of radiation overdose and subsequently five patients dying. The electron-

beam had no hardware interlocks to stop it from operating in high-energy mode without targets

in place. Also, a race condition occurred due to synchronisation issues between the equipment

control task and the operator interface task. [35]

A technical report [42] by the United States General Accounting Office discussing one of the MIM-

104 Patriot Missile’s first deployments in February 1991 at Dhahran, Saudi Arabia states that the

system had a software error in its clock which caused it to fail to stop a Scud from hitting a barracks.

The system’s radar sub-system had correctly detected the Scud but due to the clock error made an

erroneous prediction on the next location of the missile. Since it did not find the missile as it

expected it no longer tried to intercept it. The end-result of this bug was that 28 soldiers were

killed.

The Ariane 5 Rocket has had several of problems which resulted in the loss of specialised equip-

ment worth millions. According to [28], Ariane 5 self-destructed during its test flight about 40

seconds after launch due to a problem in the control software which consisted of a simple mis-

take in conversion from a 64-bit floating point to 16-bit unsigned integer value. Neither the main

computer, nor the backup computer contained code to protect this conversion and this has led to

incorrect data reaching the on-board computer causing the rocket to fail. Gérard Le Lann in [34]

states that the fault was, amongst others, due to the failure of the “capture of the overall Ariane 5

application/environment requirements” [p.339].

It is discouraging that despite the amount of checks and testing the systems had been subjected
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to some errors still went undetected. Its even more alarming that the errors in the systems were

discovered under such unfortunate circumstances.

2.3 Types of Verification Techniques

McMillan [37] and Clarke et al. [20] discuss the different kind of verification techniques which

exist and show why the more traditional approaches of simulation and testing used to detect and

remove faults from systems are not exhaustive enough to ensure a bug-free system.

Simulation makes use of an abstraction of the system by creating a model which represents it. A

set of inputs is provided to the model and the latter generates a corresponding set of outputs. The

output of the model is evaluated with anticipated results of the expected system. This method is

often quite efficient in detecting problems in the system itself. However, as McMillan points out

in [37] the system engineer can seldomly create a complete input set which is able to detect all the

possible errors in the system. Another problem met is that since simulation is performed on the

design of a system, rather than the actual system, it is hard to compare a model’s reaction to the

inputs with that of the actual system since the latter has often not been implemented at this stage.

Testing, on the other hand, is undertaken on the actual implemented system. The system is pro-

vided with a set of inputs and is evaluated according to whether the output obtained is in fact the

expected one. Again here the problem of providing a complete set of inputs arises. Moreover, an

error detected at this stage is very expensive to adjust.

Thus a more complete approach is required which detects all the potential faults in a system as

early as possible. To this end formal verification was introduced. Compared to simulation and

testing, formal verification makes sure that all possible computation paths are considered thus

fully validating that the system is completely reliable according to its specifications. It also ensures

that the system is verified prior implementation. Formal verification is of two main types: deductive

verification and model checking.

Deductive verification makes use of axioms and proof rules in order to prove the correctness of a

system. This is usually done either manually by a verification expert or by means of a specialised

software tool such as a theorem prover (which still however requires human intervention). If a

system is proven by means of deductive verification its reliability can be guaranteed to be com-
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plete. Despite this however, both manual and automated methods have some drawbacks. Manual

proof construction of a system is expensive, tedious and requires a considerable amount of time.

Also, in [19], Clark et al. tell us that automated theorem provers fail “due to the inherent complexity

of testing validity for even the simplest logics” [p.245].

Model checking, as its name implies, makes use of a model of the system which represents the

system’s reachable states. This can be achieved through an enumerative representation such as

by listing all the states and the transitions from one to the other directly, or by a representation

which encodes them symbolically. This model is then automatically checked by the use of a set of

algorithms which search the states it contains to see if they satisfy a specification requirement of

the system. As in the case of deductive verification, model checking performs an exhaustive search

of the system’s possible behaviour thus ensuring that once a system has been verified by model

checking it is reliable and meets its requirements.

2.3.1 Comparison of Model Checking with the other Verification Techniques

The use of model checking for the purpose of verification benefits the user with various advantages

over other verification techniques mentioned earlier.

Testing and Model Checking

In [20] Amir Pnueli discusses how testing (and simulation) are both very effective when a design

is full of bugs but as less and less bugs are present this effectiveness decreases considerably. So

much so that is often impossible to make sure that a system is completely bug-free through these

methods. Hence the most important advantage of model checking over testing is its exhaustive

nature. Testing attempts to do what model checking does, i.e. cover all computation paths to

check that they are consistent with the system’s requirements. Although it is technically possible

for testing to achieve this it requires a lot of insight from the testing party’s side and a complete

critical analysis of the system. However, it is easy to overlook some computation paths or to be

biased in giving certain paths higher priority over others. Moreover, testing becomes increasingly

unattainable as the system grows since its number of possible states grows at high rate with every

state variable introduced. [20]
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Testing may be at least partially automated by providing a test environment which checks the

inputs provided with the expected outputs. However real automation is achieved by providing an

environment which attempts all the possible paths as indicated earlier. This is usually not possible

with testing. Model checking was created to perform this automatically by means of appropriate

algorithms. Model checking is thus fully automatic compared to testing. [20]

Testing allows easier debugging of faults in a system by providing an output trace. This output

trace aids testers to find where the problem has occurred. Model checking acts in a similar fashion

by providing a trace of the system which shows how the system’s states changed before reaching

the faulty state. This trace allows an easier way to pinpoint where the fault has occurred and what

is required to mitigate it.

A final advantage of model checking over testing is that testing can be done only after the system

has been implemented, or partially implemented. Model checking can be done at the design stage

of a system’s creation life-cycle, i.e. before implementation has even started. Faults discovered

during design are much less expensive to fix than those found later on. If the system has already

been implemented and the mistake found is large enough to require a re-design of the system itself

a lot of time, effort and money would have been spent in vain. Model checking prevents this from

occurring by acting in the design stage itself, where a re-design might be expensive, but at least

less so.

Simulation and Model Checking

Model checking offers more or less the same advantages over simulation as it does over testing

with the only major difference being in the fact that like model checking, simulation occurs during

the design stage, pre-implementation. Thus like testing, simulation suffers from the lack of ade-

quate coverage of all computation paths and may not usually be fully automated by algorithms.

However both simulation and model checking make use of a model of the system before it is

implemented thus allowing errors to be detected much earlier on than in testing. Unfortunately,

translation of a design of system into a model might incur errors in the model which are not actu-

ally found in the design. Care must be taken therefore in both these techniques to ensure that the

model is an exact representation of the system. This is somewhat attainable if the system engineer

has complete understanding of the system being modelled.
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Deductive Verification and Model Checking

Deductive verification has an advantage over modelling and simulation because like model check-

ing it provides complete coverage of the computation paths of the system. As stated earlier, this

means that once a system is verified through deductive verification it is completely in-line with its

requirements. [20]

Deductive verification suffers a lot when one tries to automate it [13, 19]. Attempts at automation

still require quite a considerable amount of human interaction and insight, making this process

unfeasible to mechanise. On the other hand, in model checking human interaction is only required

at the very end to check if the verification is either complete or changes need to be made to the de-

sign and model due to any discovered faults. Thus in contrast to model checking’s full possibility

of automation, deductive verification can only be partially automated.

The ability required to verify a system using deductive verification is very high and usually is at

the level of an expert in the field of logic or mathematics [19, 20]. This is of course, apart from

the knowledge of the system itself being verified. Model checking does require some knowledge

to model a system according to a model verification tool’s syntax and its specification language

however this is usually quite straight forward to learn and use.

One final advantage of model checking over deductive verification is that the latter, like testing

and simulation provides no means of an error trace. Finding an error in the design depends on the

software engineer’s knowledge of the system, which once again must be very comprehensive.

2.4 Advantages

We will now summarise the advantages of model checking as mentioned in the earlier sections.

Model checking’s main advantage is its exhaustive nature which allows it to be a complete form

of system verification. Apart from this it is fully automatic as it can be implemented by means

of various algorithms which perform the verification part without the need of user interaction.

These algorithms can also be complemented with ones which produce error traces when mistakes

are found in the system at hand. Training in the use of model checking is minimal as it requires

little specialised knowledge. Since verification is performed on a model and not the actual imple-



2.5 Limitations and the State Space Explosion Problem 10

mented system, it can provide a means of ensuring the soundness of a system before it is actually

implemented. This can sometimes significantly reduce costs as it removes bugs earlier on.

Model checking, like the other verification techniques, is often used to check an entire system at

one go but it can be applied as well to modules of such system separately. Apart from checking part

of the model it is also possible to use a partial specification if required. Finally, any specification

can be written with the limit imposed only by the kind of temporal logic which the model checker

to be used accepts. [20]

2.5 Limitations and the State Space Explosion Problem

The disadvantages of model checking are in fact its few limitations. The main limitation which

nearly made model checking non-practical for industrial use was the State Space Explosion Prob-

lem. The problem arises from the reason for which model checking was introduced in the first

place: to perform an exhaustive search of all possible system behaviour. The more the number of

state variables required to represent a state, the more the number of states required to represent the

system (the state space) grows. The growth is in fact exponential in size since all possible combi-

nations of the state variables must be considered. Fortunately, as mentioned earlier, a considerable

amount of research was undertaken in this area and the number of states a system may contain

has grown considerably by the use of techniques such as symbolic representation, partial ordering,

abstraction, symmetry and induction. Refer to [20] for an indication of where to find more on these

subjects.

Another minor limitation is that model checking can be used only on systems which have a finite

number of states. This however still makes it a worthwhile verification technique as many systems

are in fact finite-state. [20]

2.6 Model Checking Process

As previously stated, model checking consists of three main stages. These are: modelling, specifi-

cation and verification. Clark et al. [20] give us a brief summary of each stage:
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Modelling — In this stage we create a design of a system we would like to verify. Once the design is

completed it is converted into a formal model which can be used by a model checking tool, called

a model checker, to verify the design of the system. Thus usually modelling a system refers to

the process of creating a representation of the states and transitions between states of the system

in the language which the model checking tool accepts. Modelling should be done with care as it

introduces mistakes if for example the design and model don’t concur, i.e. a mistake in the model

should first be verified with the design to see if the mistake was in fact in the model and not in

the design. If the mistake is in fact in the design, the design and subsequently the model must be

updated before continuing with the checking process. An example of a model is a model of a 3x3

tictactoe game or a model of a 7x4 connect four game.

Specification — Here a specification is created which contains a number of properties. These prop-

erties are the ones which the design must be able to satisfy in order for the system to be correct.

Usually this involves the use of a logical formalism such as temporal logic. A temporal logic for-

mula consists of a logic formula with added operators used for quantifying over paths and time.

Temporal logics exist in many different flavours and not all of them can specify the same kind of

properties about the system. The kind employed to specify a system depends on the system itself.

Some systems are better specified with some logics than others because of the respective opera-

tors allowed and their semantics and syntax. Also the choice of model checking tool employed in

the verification stage depends on the latter’s support for the temporal logic chosen. For example,

the original SMV Model Checker by McMillan can support a temporal logic called CTL [37] while

Mucke by Biere can support µ-calculus [7, 8]. An example of a specification could be as simple as

whether a game of tictactoe always ends with a player winning or a draw, or more complex such as

whether a tictactoe player can always win in 3 moves no matter what moves his opponent makes.

Verification — This step of the process combines the model and the specifications and, as mentioned

earlier, verifies them using an appropriate model checking tool called a model checker. If the de-

sign is correct, this stage ends the model checking process. Otherwise, if the tool reports that the

specifications are not fully observed, it produces an error trace in the form of either a counterexam-

ple (negative trace) or a witness (positive trace). This trace can be used to amend the design and

reapply the Model Checking Process until the design is verified. Many different model checkers

exist and as mentioned earlier they support different kinds of temporal logics.
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Figure 2.1: Model Checking Process

Figure 2.1 summarises the above stages and their interactions.

2.7 Types of Model Checking

Model Checking exists in two main forms: enumerative and symbolic. Symbolic model checking

emerged from enumerative model checking due to the need to mitigate the state space explosion

problem mentioned in Section 2.5.

2.7.1 Enumerative Model Checking

Enumerative model checking was first developed independently by two separate teams consisting

of Clarke and Emerson [21], and Queille and Sifakis [40]. It is called enumerative because in

this form of model checking, each state and transition of the state space is included in the model

explicitly. To achieve this we make use of a finite-state graph called a Kripke structure. In these

graphs, each node of the graph is a state and each transition between two nodes in the graph

represents a transition between two states of the system. As an example of a Kripke structure

representing a system see Figure 2.2. Here we have a simple system consisting of four states with

four possible transitions. The initial state of the system is shown by the state with the incoming

arrow which does not originate from another state. Not also how each state is labelled with the
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Figure 2.2: Example of a Kripke Structure modelling a system

values of the variables which are true or false in the respective state. For three variables there are

23 = 8 possible states in the state space but only four are considered correct in our system.

Specification in enumerative model checking may be done in any formalism which allows us to

reason about how systems change with time. Temporal logic is a form of logic which allows this

without introducing time explicitly in the notation [20]. Formulas in temporal logic consist of the

usual Boolean operators used in propositional logic such as ∧, ∨, ¬,⇒ and⇔. However in order to

reason about how the states of a model representing the system changes with time other operators

must be introduced. Such operators would allow us to specify things about the system such as

whether a particular state will be eventually or finally reached or that an error state in the state

space is never reached at all [20]. There are two kinds of these operators in temporal logic: path

quantifiers and temporal operators [20]. Path quantifiers, as their name implies, quantify over

paths (sequences of states). Clarke et al. tell us in [20] that they are usually of two forms:

• Existential path quantifier, (E) — signifies that a kind of path does exist

• Universal path quantifier, (A) — signifies that the formula at hand is true for all the paths

starting at a particular state.

Temporal operators describe the paths themselves. There are various such operators depending

on the temporal logic employed. These include:

• Next temporal operator, (X) — a property holds in the state after the current one on the path.

• Finally temporal operator, (F) — also known as eventually and in the future, this operator

means that a property will hold on some state on the path.

• Globally temporal operator, (G) — also known as always, this operator asserts that a property

holds on all the states on the path.

Other operators exist depending on the logic employed. Using the above operators we can write

formulas such as AF p or EG p ∨ q which mean that for all paths, eventually p is true and there
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exists a path where p or q are always true, respectively. Example of temporal logics are CTL , LTL

and CTL∗ [20].

Another important aspect of enumerative model checking is how verification is achieved. As

stated earlier, a formula in temporal logic may be adequately used to represent a specification

property which a model should satisfy. To verify this property on the model using enumerative

model checking, we usually make use of an iterative approach. In this approach we break down

the temporal logic formula we require into simpler, nested formulas, which we model check one at

a time, working progressively outwards. Model checking a formula involves finding which states

of the Kripke structure satisfy it. Once the outer formula is reached we have checked the actual

formula we had set out for in the first place [20]. Consider again our former example EG p ∨ q.

Verification of this formula may be achieved by first considering the states satisfying p, then the

states satisfying q, then the states satisfying their disjunction and so on, until EG p ∨ q itself is

verified.

2.7.2 Symbolic Model Checking

Initially only models with at most 104 to 108 states could be checked for errors [19] due to the state

explosion problem. Various improvements however have been suggested to upgrade this limiting

factor. One of the first and most successful was symbolic model checking.

Symbolic model checking differs from enumerative model checking since in the former we don’t

represent the model of the system explicitly like in the latter. Instead we use Boolean formulas to

represent and manipulate the states and transitions. The main idea behind this approach is that

a single Boolean formula has the ability to refer to a set of states at a time and can thus provide

a more compact representation than listing all the states and transitions themselves as done pre-

viously. However, in order to achieve an efficient use of symbolic model checking using Boolean

formulas we require an efficient representation of such formulas. One such efficient representation

is Bryant’s Ordered Binary Decisions Diagrams (OBDDs) [4, 11] which were first suggested and

used by McMillan in his study on symbolic model checking and his implementation of the SMV

Model Checker [37]. As an example of how a system may be modelled using OBDDs see Figure

2.3. In this figure we represent the same system shown in Figure 3.1. The OBDD on the left-hand

side represents the initial state while that on the right-hand side represents the transitions for the
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Figure 2.3: Example of OBDDs modelling a system

system. For the trivial system we have chosen a Kripke structure suffices. However as systems

grow, while Kripke structure blow up in size, OBDDs tend to be less expansive in their growth.

In its worst case scenario symbolic model checking provides no advantage over enumerative state

model checking. In fact, in order to achieve a better representation certain measures must be taken

to chose an adequate ordering of the variables of the binary decision diagram. The ordering used

in our graphs is shown beneath the two diagrams.

Specification of properties in symbolic model checking can be done in the same temporal logics as

in enumerative model checking. However more often then not, these are expressed using fixpoints

by means of appropriate operators such as those available with the temporal logic called µ-calculus

[5, 9, 10]. Hence, if logics such as µ-calculus are not employed it is often possible to represent the

other languages such as CTL and CTL∗ by translating the temporal and path operators into fixpoint

representations [20, 21, 27]. As an example consider the µ-calculus fixpoint representation of the

CTL formula AF p we explained earlier, which may be written as: µZ.p ∨AX Z.

The main reason for the above stems from the fact that symbolic model checking differs from

enumerative model checking also in how the verification part is achieved. Fixpoints allow us to

use a temporal logic formula to recursively define the set of states required to satisfy specification

we require which may be represented using OBDDs. This translates into a different verification

algorithm then the one used for enumerative model checking [20]. As stated in [13] by Burch et

al. using OBDD-based symbolic model checking has made it possible for systems with more than
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1020 states to be verified using symbolic model checking.

2.7.3 Other forms of Model Checking

Clarke et al. state in [20] that further forms of model checking exist. These make use of techniques

such as partial ordering, abstraction, symmetry and induction. (We refer the reader to [20] for

an indication where to find more material on these techniques.) Such techniques have greatly

extended the size of systems which can be verified by model checking. For example in [18, 22, 23]

Clarke, Grumberg and Long claim that the abstraction technique has allowed them to verify a

system with over 101300 states.

2.8 Conclusion

In this chapter we have introduced and discussed model checking as a system verification tool. As

we have seen model checking was born from the necessity to verify systems in a complete manner

automatically without the need of writing formal proofs. Verification of this manner compares

adequately with other forms of more common techniques used currently and provides its user

with many advantages. As a technique it consists of three stages which complement one another.

We have also discussed how model checking’s initial explicit representation limited the size of the

systems which could be verified due to the state explosion problem. However this problem was

soon overcome by the use of many techniques, of most note to us being the symbolic representation

employed in symbolic model checking. In the following chapters we will explain into more detail

the modelling, specification and verification stages which we have introduced here by examining

amongst others: the structures, the techniques, the logics and the algorithms required.



CHAPTER 3

MODELLING

We fortify in paper and in figures,

Using the names of men instead of men,

Like one that draws the model of an house

Beyond his power to build

William Shakespeare

3.1 Overview

In this section we explore in detail the first stage of model checking which concerns itself with the

modelling of systems. As its name implies, this stage’s main aim is the conversion of a system into

a model which can be then be later on verified to meet a particular specification. In enumerative

state model checking such a model can be created by the use of a kind of graph known as a Kripke

structure. While a Kripke structure achieves the required aim of modelling a system it is often

inadequate for the modelling of larger systems due to what is known as the state space explosion

problem. This arises from the fact that the Kripke structure represents each state of the system

explicitly and as the system’s state space grows the graph itself must grow to accommodate it.

Needless to say the structure soon becomes unmanageable and heavy on system resources. Hence,

a more compact, implicit representation is required. Ordered Binary Decision Diagrams (OBDDs)

are employed in symbolic model checking to try to achieved this effect and thus allow us to model

much larger systems than attainable before.
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3.2 Introduction

The modelling of a system is an important aspect of model checking. A model of a system must

represent the system itself whilst taking care to ensure that the correct level of abstraction is used

as sometimes it is unnecessary to model the entire system’s details. In model checking we are

only interested in modelling the system’s aspects which allow us to ensure that it is correct. More-

over, introducing unnecessary details only makes the model unnecessarily larger and harder to

understand and reason about.

A model of a system can be achieved by modelling its components, i.e. its states and the transitions

from one allowed state to the next. Representing all the states of a system and the possible transi-

tions, allows us to model the system in its entirety. A state of a system describes the values of its

variables at a specific point in time. A transition, on the other hand, describes how the variables

change their value from a point in time to the next, i.e. from one state to the other. Thus a transition

can be thought as a pair of states, one containing the variables’ values before and one containing

the variables’ values after a transition has occurred. An infinite sequence of states of the system

constitute a computation or path. Each state in this sequence is arrived to from the previous one by

means of a valid transition.

3.3 Some Notation

In this section we will introduce the notation which we will use throughout this body of work. We

will use the notation by Clarke et al. in [20].

In order to represent a state we require a set V = {v1, . . . , vn} where each set member represents a

variable of the system. Each of these variables ranges over another finite set D, or domain. Finally

we require a function which associates a value in D for every value v in V . A state can thus be a

valuation of this function, i.e. of s : V → D. For example, given V = {a, b, c} where a, b and c

range over D = {2, 4, 6, 8}, a state x is can be represented by the valuation 〈a← 4, b← 2, c← 8〉.

Since a transition is in fact a pair of states, all we require to represent one is two valuations of the

set V . We use V to represent the variables’ values in the current state, and V ′ to represent the

variables’ values in next state, after the transition has occurred. For example, consider the state
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x above. A next state, x′ can be 〈a ← 4, b ← 2, c ← 6〉. As can be seen the transition has caused

variable c to change from 8 to 6 while the other variables have remained the same.

Atomic propositions allow us to reason about the system and later on describe the system’s speci-

fications. They constitute a set AP where the elements have the form

v = d

where v ∈ V and d ∈ D. Using the function s introduced above, a proposition v = d is true in a

state if s(v)→ d. Thus the example state x above can be represented using the atomic propositions

(a = 4), (b = 2) and (c = 8). Using first order representation we obtain the formula (a = 4) ∧ (b =

2) ∧ (c = 8). (Note that using first order formulas we can represent a number of states at the same

time. The first order formula, (a = 4) ∧ (b = 2) encompasses, amongst other states, both the states

x and x′ above).

3.4 Modelling using an Enumerative Representation

The first representation one might use to model a system is a direct one where all the states and

transitions are represented explicitly into the model. A Kripke structure is a form of state transition

graph which allows us to create such a kind of model. The nodes of a Kripke structure represent

the states themselves, while the directed arcs between any pair of nodes (including the same node)

represent the transitions from one state of the system to the next.

In order to know what the value of the variables in a particular state-node is we use an appropriate

labelling function. This function when given a state returns the values of the variables true in that

particular state. Moreover, a path or computation can be represented in a Kripke structure by a

sequence of nodes whereby each node is reachable from the previous one by an existing directed

arc.

Kripke structures have been described formally for modelling by various authors. These descrip-

tions are congruent to one another and some of them may be found in [19–21, 37]. A Kripke structure

M over AP is a four tuple

M = (S, S0, R, L)
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where,

– S is a finite set of states representing all the possible states of the system.

– S0 ⊆ S is the set of initial states which is subset of the set of possible states S.

– R ⊆ S × S is a transition relation describing the transitions of the system. This relation must

be total i.e. there is a next state s′ element of S for every state s element of S such that R(s, s′):

[∀s ∈ S,∃s′ ∈ S.(s, s′) ∈ R].

– L : S → 2AP is a function that labels each state of the graph with the set of atomic proposi-

tions which are true in that state.

A path π in the structure M starting from state s can be defined as an infinite sequence of states

π = s0s1s2 . . . such that s0 = s and for every pair of states on the path R holds.

In order to model a system using a Kripke structure just described we require two things, namely

a formula for the initial states S0 and a formula for the transition relation, R. The set of states S

is in fact the state space, i.e. all the possible valuations of V , some of which may not in fact be in

the system we wish to model. The set of initial states S0 is the set of all valuations for V which

are true for the formula S0. This set of states forms our starting point from which we will obtain

the reachable set of valid states of our system by means of the transition relation. The transition

relation for two states s and s′ holds if the formula R evaluates to true with each valuation v ∈ V

for s and each v′ ∈ V for s′. One last item we require is the labelling function L. If v ∈ L(s) then

s(v) = true else v /∈ L(s) and s(v) = false. Using thus the two formulas S0 andRwe can describe

our model’s reachable (valid) states and use the Kripke structure to model these states explicitly.

Consider as example the system modelled by the Kripke structure shown in Figure 3.1. The

system has three variables a, b and c. Each of these variables ranges over the binary domain

D = {true, false} (alternatively D = {1, 0}). Thus the 3-tuple (d1, d2, d3) ∈ D ×D ×D provides a

valuation for the three variables, where d1 is the value for a, d2 is the value for b and d3 is the value

of c. The system will start at the state in which a = true, b = false and c = false. Also, if a, b and

c represent the values of the variables at the current state and a′, b′ and c′ represent the values of

the variables at the next state the transitions of the system can be described as:
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Figure 3.1: An Enumerative Model (Kripke Structure) of a simple system

a′ :≈ a,¬a

b′ := ¬b

c′ := (a ∧ b′) ∨ c

Note that:

“:=” represents a normal assignment

“:≈” represents a non-deterministic assignment

The two first order formulas S0 and R can be used to fully characterise the system. S0, the set of

initial states is represented by:

S0(a, b, c) ≡ (a = true) ∧ (b = false) ∧ (c = false).

The set of transitions of the system,R is represented by:

R(a, b, c, a′, b′, c′) ≡

(((a = true) ∧ (b = false) ∧ (c = false)) ∧ ((a′ = false) ∧ (b′ = true) ∧ (c′ = true)))∨

(((a = true) ∧ (b = false) ∧ (c = false)) ∧ ((a′ = true) ∧ (b′ = true) ∧ (c′ = true)))∨

(((a = true) ∧ (b = true) ∧ (c = true)) ∧ ((a′ = true) ∧ (b′ = false) ∧ (c′ = true)))∨

(((a = true) ∧ (b = true) ∧ (c = true)) ∧ ((a′ = false) ∧ (b′ = false) ∧ (c′ = true)))∨

(((a = false) ∧ (b = false) ∧ (c = true)) ∧ ((a′ = true) ∧ (b′ = true) ∧ (c′ = true)))∨
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(((a = true) ∧ (b = false) ∧ (c = true)) ∧ ((a′ = true) ∧ (b′ = true) ∧ (c′ = true)))∨

(((a = true) ∧ (b = false) ∧ (c = true)) ∧ ((a′ = false) ∧ (b′ = true) ∧ (c′ = true)))∨

(((a = false) ∧ (b = true) ∧ (c = true)) ∧ ((a′ = true) ∧ (b′ = false) ∧ (c′ = true)))∨

(((a = false) ∧ (b = false) ∧ (c = true)) ∧ ((a′ = false) ∧ (b′ = true) ∧ (c′ = true)))∨

(((a = false) ∧ (b = true) ∧ (c = true)) ∧ ((a′ = false) ∧ (b′ = false) ∧ (c′ = true)))∨

(((a = true) ∧ (b = true) ∧ (c = false)) ∧ ((a′ = true) ∧ (b′ = false) ∧ (c′ = false)))∨

(((a = false) ∧ (b = true) ∧ (c = false)) ∧ ((a′ = true) ∧ (b′ = false) ∧ (c′ = false)))∨

(((a = true) ∧ (b = true) ∧ (c = false)) ∧ ((a′ = false) ∧ (b′ = false) ∧ (c′ = false)))∨

(((a = false) ∧ (b = false) ∧ (c = false)) ∧ ((a′ = true) ∧ (b′ = true) ∧ (c′ = false)))∨

(((a = false) ∧ (b = false) ∧ (c = false)) ∧ ((a′ = false) ∧ (b′ = true) ∧ (c′ = false)))∨

(((a = false) ∧ (b = true) ∧ (c = false)) ∧ ((a′ = false) ∧ (b′ = false) ∧ (c′ = false))).

Or, more compactly, using the system transitions directly:

R ≡ R0,R1 where

R0(a, b, c, a′, b′, c′) ≡ (a′ = a) ∧ (b′ = ¬b) ∧ (c′ = (a ∧ b′) ∨ c).

R1(a, b, c, a′, b′, c′) ≡ (a′ = ¬a) ∧ (b′ = ¬b) ∧ (c′ = (a ∧ b′) ∨ c).

Now if we consider Figure 3.1 once more, as would be expected with three variables which range

over a binary domain, the number of possible states of the system is eight. The transitions which

satisfy R are also shown as directed arches (sixteen in all). There is also one start state marked by

an in-going directed arc which satisfies S0. The states and transitions which satisfy both S0 and R

are enclosed by a dotted rectangle. These states and transitions compose the actual model of our

system. Starting from the start state (itself a valid state) we can reach four other valid states (five

states of the state space in all) by means of the transitions. In this way we obtain the computation

paths which are valid according to our system. The rest of the states are considered invalid even

though they are part of the possible state space. This is due to the fact that starting from the start

state they can never be reached. Moreover the transition relation defines some transitions which
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are never used since they exist between states that do not lie on paths which originate from the

start state.

The Kripke structure M = (S, S0, R, L) in our example can be defined formally as:

– S = D ×D ×D.

– S0 = {(true, false, false)}.

– R = {((true, false, false), (false, true, true)), ((true, false, false), (true, true, true)),

((true, true, true), (true, false, true)), ((true, true, true), (false, false, true)),

((false, false, true), (true, true, true)), ((true, false, true), (true, true, true)),

((true, false, true), (false, true, true)), ((false, true, true), (true, false, true)),

((false, false, true), (false, true, true)), ((false, true, true), (false, false, true)),

((true, true, false), (true, false, false)), ((false, true, false), (true, false, false)),

((true, true, false), (false, false, false)), ((false, false, false), (true, true, false)),

((false, false, false), (false, true, false)), ((true, false, true), (false, false, false))}.

– L((true, false, false)) = {a = false, b = true, c = true},

L((true, false, false)) = {a = true, b = true, c = true},

L((true, true, true)) = {a = true, b = false, c = true},

L((true, true, true)) = {a = false, b = false, c = true},

L((false, false, true)) = {a = true, b = true, c = true},

L((true, false, true)) = {a = true, b = true, c = true},

L((true, false, true)) = {a = false, b = true, c = true},

L((false, true, true)) = {a = true, b = false, c = true},

L((false, false, true)) = {a = false, b = true, c = true},

L((false, true, true)) = {a = false, b = false, c = true},

L((true, true, false)) = {a = true, b = false, c = false},

L((false, true, false)) = {a = true, b = false, c = false},

L((true, true, false)) = {a = false, b = false, c = false},

L((false, false, false)) = {a = true, b = true, c = false},

L((false, false, false)) = {a = false, b = true, c = false},

L((false, true, false)) = {a = false, b = false, c = false}.
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and the model consists of a number of valid computation paths, some of which are:

– (true, false, false), (false, true, true), (true, false, true), (true, true, true), (true, false, true),

(false, true, true), . . .

– (true, false, false), (false, true, true), (false, false, true), (true, true, true), (true, false, true),

(false, true, true), . . .

– (true, false, false), (true, true, true), (false, false, true), (false, true, true), (true, false, true),

(true, true, true), . . .

3.5 Modelling using a Symbolic Representation

Enumerative model checking using Kripke structures achieves the goal of modelling a system

for model checking. However since it uses an explicit enumeration of the system’s states, with

every new system state introduced the model must grow accordingly. Due to the state explosion

problem mentioned earlier some systems soon become too large to model using Kripke structures.

In order to mitigate this problem, symbolic model checking was introduced whereby the states and

transitions of the systems are represented more compactly by their associated Boolean formulas

instead of explicitly. The set of states of the system can be thus represented by a formula which

such states satisfy. The formula at hand can be characterised using various representations. One

direct but inefficient symbolic representation is a truth-table. These tables adequately represent

formulas but suffer from exponential blow-up as well since for every variable introduced the table

grows twice in size. In this section we consider Ordered Binary Decision Diagrams as a much more

efficient symbolic alternative which produces more compact models [7, 8, 13, 20, 37]. OBDDs were

created as a structure by Bryant and discussed in various of his papers amongst which are [11, 12].

OBDDs are based on binary decision trees [4, 7, 20, 37]. A binary decision tree is a directed, rooted

tree which has two kinds of vertices: nonterminal vertices and terminal vertices. Nonterminal

vertices are labelled by var(v) and have two outgoing branches, one for when v is assigned the

value 1 and one for when v is assigned the value 0. These lead to two successor vertices (or child

vertices), high(v) and low(v) respectively, which are themselves vertices (may be terminal or non-

terminal depending on the case). Nonterminal vertices are the point of decision: where we decide
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a b c d a ∨ b c→ d (a ∨ b) ∧ (c→ d)
0 0 0 0 0 1 0
0 0 0 1 0 1 0
0 0 1 0 0 0 0
0 0 1 1 0 1 0
0 1 0 0 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 0 0
0 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 0 1 1 1 1
1 0 1 0 1 0 0
1 0 1 1 1 1 1
1 1 0 0 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 0 0
1 1 1 1 1 1 1

Table 3.1: Truth Table of Boolean function (a ∨ b) ∧ (c→ d)

whether the Boolean variable is assigned 0 or 1 in the function. Depending on the assignments we

require for the Boolean variables, the tree guides us to an appropriate terminal vertex. Terminal

vertices are labelled by value(v) which is either 0 or 1. These vertices signify the final value of a

Boolean function and are reached by traversing the tree from the root variable non-terminal node

by following the path according to the variable assignments required.

Consider as example the Boolean formula (a ∨ b) ∧ (c → d). The truth table for this formula is

shown in Table 3.1. The equivalent binary decision tree is show in Figure 3.2. The circle nodes are

the nonterminals while the square nodes are the terminals. As can be noted however, there is no

real advantage in representing a formula using a binary decision tree over a truth table.

If one views Figure 3.2 one notices that there are many similar, repeated sub-trees; a lot of redun-

dancy. Consider, for example, the sub-trees at the level of the variable d. There are in fact many

repeated terminal node pairs as children of these d nodes as can be seen in Figure 3.3. If we identify

and remove such repetition and redundancy cases in the tree without changing the formula rep-

resented by the graph, we obtain what is known as binary decision diagram (BDD) from the binary

decision tree. The tree thus becomes a directed acyclic graph (DAG). [4, 7, 11, 20, 37]

Structure-wise a BDD is very similar to a binary decision tree. It consists of two types of nodes, ter-
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Figure 3.2: Binary Decision Tree of the example formula (a ∨ b) ∧ (c→ d)

Figure 3.3: Distinct d node sub-trees

minals and nonterminals. Both terminal and non-terminal nodes are similar to the ones of binary

decision trees described earlier.

Every sub-tree rooted at a non-terminal v represents a function fv. If the variable represented by

the node v is xi then the function represented by the subtree rooted at v is:

fv = (¬xi ∧ flow(v)) ∨ (xi ∧ fhigh(v))

If by using a particular assignment of variables, tree traversal leads to a terminal node, value(v) = 1

then the function’s result is 1 else if value(v) = 0 then the function’s result is 0.

The representation we require to model our system symbolically is based on a form of BDD called

ordered binary decision diagram (OBDD). In [11] Bryant showed how BDDs can be ordered and re-

duced so that they provide a compact canonical representation of a Boolean function. Since they

are able to represent a Boolean function, OBDDs may be use to represent models of system as

described by McMillan in [37].

Ordering a BDD means that the variables in the graph are given a fixed order from root to any of

the terminal nodes. This can be done by a total ordering < of the variables by ordering the non-
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terminal nodes which are labelled by them. This implies that if for example, a < b, in the graph

a is always eventually a parent node of b if we go up the path from the latter, while b is always

eventually a child node of a if we go down the path from the latter. In other words, b may be found

in the sub-tree of a but not vice versa.

Reduction is achieved by considering isomorphic sub-trees and redundant nodes. Isomorphic

subtrees are two subtrees where each of terminal and non-terminal nodes in the first subtree have

corresponding nodes in the second subtree. Isomorphic sub-trees should be removed by removing

duplicate copies and leaving a single sub-tree. All the arcs to the removed sub-trees are then

pointed to the remaining isomorphic sub-tree. Moreover, redundant nodes such as those where

a parent node points to a child node with both its low and high arcs should be replaced with the

child node. To achieve this, three transformation rules should be applied on the graph repeatedly.

These transformations don’t alter the function represented. They are:

Remove duplicate terminals — remove all duplicated terminals leaving only one copy. All the

directed arcs to these removed terminals should be redirected to the remaining terminal node

representing them.

Remove duplicate nonterminals — if two nonterminals x and y represent the same variable (i.e.

var(x) = var(y)) and their low and high arcs point to nonterminals that represent the same vari-

able (i.e. low(x) = low(y) and high(x) = high(y)), then either x or y can be eliminated and all

the arcs going into the removed node can be directed to the remaining one. An example of this is

shown in Figure 3.4.

Remove redundant tests — if a non-terminal x has both its low and high arcs pointing to the same

node (i.e. low(x) = high(x)), remove node x and point all the arcs going into x to low(x). Refer

once more to Figure 3.4 for an example of this reduction technique.

Using a fixed variable ordering and applying the above rules until the graph no longer reduces in

size provides a canonical representation. The graph obtained is also known as an OBDD. As an

example of an OBDD consider the ordering and reduction of the formula shown earlier (a∨b)∧(c→

d) in Figure 3.5 shown as a binary decision tree earlier in Figure 3.2.

In [11], Bryant describes various algorithms which allow us to construct, manipulate and reason

about OBDDs. One of these is of course the algorithm Reduce which provides a canonical OBDD
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Figure 3.4: OBDD Reduction Techniques: (Above) Removal of duplicate nonterminals, (Below)
Removal of redundant tests

Figure 3.5: Binary Decision Diagram of the example formula (a ∨ b) ∧ (c→ d)
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Figure 3.6: OBDD variable ordering for the formula (a ∧ b) ∨ (c ∧ d): (Left) a < b < c < d, (Right)
a < c < b < d

from a function graph using the reduction rules just described. Also of note is the algorithm Apply

which takes graphs which represent two functions and one of the sixteen binary operators and

produces a reduced graph representing a new function which combines the functions using the

operator.

It is important to know that different orderings of the variables leads to OBDDs of different sizes.

For example consider the OBDD representation of the formula (a ∧ b) ∨ (c ∧ d). Figure 3.6 shows

how different variable orderings effect the size of this OBDD. The OBDD on the left-hand side

is smaller than the one on the right by one node. This example is trivial, however, as a formula

grows variable ordering may have a great impact on the size of the OBDD. Since we are going

to use OBDDs to create our model and in model checking the size of the model is an important

factor on what sizes of systems can be modelled, finding the variable ordering which leads to an

optimal ordering is essential. Clarke et al. in [20] however tell us that Bryant discovered that

finding the optimal ordering however is infeasible. They continue to tell us that to mitigate this

problem various heuristics were later developed.

Now that we have discussed OBDDs we show how to employ them for use in modelling for use

in symbolic model checking. Modelling can be achieved in two ways, either by representing the

system’s Kripke structure by means of OBDDs or by constructing the OBDD directly from a high

level description of the system such as the first order formulas, S0 andR used in the earlier exam-

ple to construct a Kripke structure. Needless to say it is often considered better to construct the
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OBDD directly, as the intermediate Kripke structure might be very large even if the OBDD is not.

[20]

In both of the above cases, in order to model a system using OBDDs we must represent the transi-

tion relation and, when required, the set of initial states which is also in fact a relation. (Here again

we use the notation due to Clarke et al. in [20].) Both these relations may sometimes range over

a binary domain such as {0, 1} or {false, true}. In such a case to represent them using an OBDD

we use the characteristic function of the relation. Generally, if Q is an n-ary relation over a domain

{0, 1} then we can represent it using its characteristic function fQ, such that:

fQ(x1, . . . , xn) = 1 iff Q(x1, . . . , xn)

If the relation however does not range over a binary domain but over a larger finite one, we need

a form of mapping which maps an encoding which consists of a string of digits (a vector) from the

set {0, 1} to the elements of this domain. We assume the size of the domain is 2m where m tells us

how many binary digits we require to map the entire domain. Note that this causes, sometimes,

the number of binary patterns allowable with m bits to be larger than the domain. This however

is a minor setback, as these bit patterns are just unused or considered invalid. Formally, if Q is an

n-ary relation over a finite domain D with 2m elements we use the bijection φ : {0, 1}m → D that

maps a vector of size m to an element of D. Now that we have an adequate mapping, we require

a Boolean relation that is the same as the original one in meaning but which instead of taking as

input values of the domain D, it uses the mappings just created. Thus a relation of m × n arity

must be created. We denote the relation by Q̂ and define it as:

Q̂(x̄1, . . . , x̄n) = Q(φ(x̄1), . . . , φ(x̄n))

where x̄i is a vector of m Boolean variables that encodes the variable xi. As can be seen bijection φ

is being used to convert the encoding into a value in the domain D before passing it to the original

relation Q. Q can thus be represented by an OBDD of the characteristic function fQ̂ of the newly

defined relation Q̂.

Finally, it is also possible to create the characteristic of a relation whose domain consists of the

Cartesian products of different domains, D1 × D2 × . . . × Dn, where n is the relation’s arity. To

achieve this all we require is different bijections for the different domains, φ1, φ2, . . . φn, respec-

tively. We then define the new relation as:
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Q̂′(x̄1, . . . , x̄n) = Q(φ1(x̄1), . . . , φn(x̄n))

Using the characteristic function of this relation enables us to represent it using an OBDD.

Clarke et al. [20] tell us that using this encoding it is possible to represent a Kripke structure

M = (S, S0, R, L) using OBDDs by representing its components: the sets of states S and S0, the

relation R and the mapping L. Representing S is quite straightforward. We use a bijection similar

to the one just described which maps a vector of bits to each state. Each encoding is used to

describe a state of the state space. Since S is in fact the entire state space we end up with the

OBDD for 1. The set of initial states can be represented similarly to the encoding used for S. For

the transition relation R we use the same state-encoding and as in enumerative model checking

two sets of Boolean variables, one to represent the state before transition and one to represent the

state after transition. If we use the binary relation R̂ to represent the required transition relation

R as described above we can create the OBDD for it by using its characteristic function. Mapping

L in this case will be considered to map an atomic proposition to a set of states, i.e. a subset of S

where it is true. This set of states can also be encoded using the same encoding used to represent

S (similar to how S0 is also represented) and hence can be represented with an OBDD. Each of the

atomic propositions can be represented this way. Thus we have shown how OBDDs can be used

to represent a Kripke structure and hence model our system.

Instead of representing the Kripke structure itself we can employ another method to model our

system symbolically. To do so we use a high level description of the system such as the first

order formulas of the transition relation R and the set of initial states S0 in our earlier example.

However, instead of creating their Kripke structure as in enumerative model checking we simply

create their OBDDs by first obtaining the relations’ characteristic functions. Using Byrant’s Apply

algorithm mentioned earlier we can easily build the OBDD representation sub-function at a time

until we obtain the OBDDs of the characteristic functions which model the states and transitions

of the system. As an example consider the OBDDs for the characteristic functions of S0 (ordering:

a < b < c) andR (ordering: a < a′ < b < b′ < c < c′) which we have defined earlier. These OBDDs

are shown in Figure 3.7 and they model the same exact system shown earlier in Figure 3.1.
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Figure 3.7: A Symbolic Model (OBDD) of a simple system: (Top) OBDD of the characteristic func-
tion of S0(a, b, c), (Bottom Left) OBDD of the characteristic function of R0(a, b, c, a′, b′, c′) repre-
senting the first part of transition relation R, (Bottom Right) OBDD of the characteristic function
ofR1(a, b, c, a′, b′, c′) representing the second part of transition relationR.

3.6 Conclusion

In this chapter we have seen how a system may be modelled enumeratively using a Kripke struc-

ture and a symbolically by means of OBDDs. In next chapter we will introduce the next stage of

model checking, that is, specification. Specification concerns itself with the formulation of proper-

ties which are then used to verify the systems we have modelled. In order to achieve this we make

use of what are known as temporal logics which we introduce shortly.



CHAPTER 4

SPECIFICATION

It is easier to change the specification

to fit the program than vice versa.

Alan Perlis

4.1 Overview

This chapter is dedicated to the specification step of the model checking process. As highlighted

earlier specification entails the translation of properties, which we wish to validate on the system

at hand, into a form of logic which allows us to reason about the states of the system. The logic

utilised is often temporal logic. It is of various forms, each of which has different expressiveness

properties. In this section we will discuss various such forms and provide their syntax and seman-

tics.

4.2 Introduction

The specification of a system, which is obtained by a careful analysis of its requirements, consists

of the properties which the system must have at all costs for it to be considered valid. When we

create a system we try to abide by these specifications to ensure that the system is correct. However

when designing the system based on these specifications, sometimes there are inconsistences or

bugs which may crop up no matter the effort done to produce the correct design. A model of a
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system is the translation of the design into a representation. If mistakes are present in the design,

translation of the design into the model obviously leads to a faulty model. In model checking we

check models for such faults by making an exhaustive search in the reachable states of the system.

To perform this task the properties are converted into temporal logic formulas and by means of

model checking algorithms these properties are verified on the model.

4.3 Temporal Logic and Temporal Logic Operators

Temporal logic is a form of logic which allows us to reason about sequences of transitions between

states of a system without introducing time explicitly in the notation [20]. Formulas in temporal

logic consist of the usual Boolean operators used in propositional logic such as ∧, ∨, ¬,⇒ and⇔.

However in order to reason about the states of a model representing the system other operators

must be introduced. Such operators would allow us to specify things about the system such as

whether a particular state will be eventually or finally reached or that an error state in the state

space is never reached at all [20].

There are two kinds of these operators in temporal logic: path quantifiers and temporal operators

[20]. Path quantifiers, as their name implies, quantify over paths (sequences of states). Clarke et

al. tell us in [20] that they are usually of two forms:

• Existential path quantifier, (E) — signifies that a kind of path does exist, i.e. starting from a

certain state at least one path exists where the formula at hand is true.

• Universal path quantifier, (A) — signifies that the formula at hand is true for all the paths

starting at a particular state.

Temporal operators describe the paths themselves. There are various such operators depending

on the temporal logic employed. Some of the most common according to Clarke et al. [20] are:

• Next temporal operator, (X) — a property holds in the state after the current one on the path.

• Finally temporal operator, (F) — also known as eventually and in the future, this operator

means that a property will hold on some state on the path.
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• Globally temporal operator, (G) — also known as always, this operator asserts that a property

holds on all the states on the path.

• Until temporal operator, (U) — this operator means that a second property holds at this state

or in a future state and that in all the states leading to such a state the first property holds.

Also, once the second property holds the first property does not need to hold.

• Release temporal operator, (R) — along the path, the second property holds. If along said

path the first property is true, then the first property releases the second property, i.e. in a

state (both are true), and in the rest of the path the second property is false. Otherwise, there

is the possibility that the first property does not eventually hold.

The temporal logic operators just described are summarised in Table 4.1.

4.4 Linear-time and Branching-time Temporal Logics

Ever since the advent of the first temporal logics, temporal logics have been divided into many

different categorisations. In our study the main categorisation we are interested in divides tem-

poral logics into two main families: linear-time or branching-time. The difference between these

families of temporal logics lies in how time is viewed. Linear-time temporal logics view time as a

linear sequence of events while branching-time temporal logics consider time to be able to branch

into different pathways. Various papers exist which discuss the differences between these kinds of

logics: what they can express, how they are related to one another, whether one can discard one

for the other and so on. Some of these papers are [6, 19, 21, 25–27, 33]. We will now summarise the

contents of such papers so as to compare and contrast linear-time and branching-time temporal

logic and at the same time introduce various temporal logic languages.

One of the first thorough studies which concerns linear-time temporal logics according to Lamport

[33] was done by Pnueli. Lamport in his study compares linear temporal logic with branching time

temporal logic and argues that linear temporal logic is better for specifying concurrent systems

while branching-time is better for non-determinism due to the possibility of a state branching into

different future states. He also argues that these logics are not equivalent in their expressiveness.

The operators used by Lamport in his paper are the “always” (�) and “sometime” (→) which
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Name Symbol Arity Type Timeline

Next N Unary Temporal Operator

Finally F Unary Temporal Operator

Globally G Unary Temporal Operator

Until U Binary Temporal Operator

Release R Binary Temporal Operator

Table 4.1: Summary of Temporal Logic Operators. The graphs showing the timelines are partially
reproduced from [38]
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are similar to the G and F described above respectively. He also introduced some further logic

operators to increase the expressiveness of his temporal logic language.

Ben-Ari et al. in [6] discuss linear-time and branching-time logic and combine them into a single

language which they name UB for “the unified system of branching time” [p.165]. This language is

based on time which is branch-like in structure. However, they argue that by providing symmet-

rical sets of temporal operators it is possible to write both linear and branching temporal logic

properties. The temporal operators used in UB consist of a path quantifier (A and E) followed by

one of these temporal operators: G, F and X. Apart from this they also tell us that whichever type

of temporal logic is used in a program depends on the nature of the type of system one wishes to

formalise.

In the first work to make use of model checking as it is known today, Clarke and Emerson [21]

form the language CTL. CTL or computation tree logic is a branching-time temporal logic which

extends UB by adding the until (U) temporal operator, i.e. by adding two combinations of path

quantifier—temporal operator pair (as in Ben-Ari et al.’s work): EU and AU. Continuing on this

work we find a study by Emerson and Halpern [26]. By altering the syntax of both CTL and UB in

various ways they produce a number of languages which they compare for expressiveness.

Emerson and Halpern [25] continue on the work by both Lamport and Ben-Ari et al. by first

providing criticism about some mistakes in former’s approach. Lamport stated that some linear

properties cannot be expressed in branching temporal logic thus making the former superior to the

latter when it comes to certain systems, namely concurrent ones. They argue that by introducing

more operators branching temporal logic can become more expressive. They proceed in a similar

way to Ben-Ari et al. by providing a temporal language which like UB allows a better comparison

of linear-time and branching-time temporal logics which they call CTL∗.

Clarke, Emerson and Sistla provide in [19] a model checking algorithm for the branching-time

temporal logic CTL which is of linear complexity in the temporal logic specification and the size

of the state-space of the system. They also show how as a branching-time temporal logic CTL is

able to handle fairness properties by using a simple change in its semantics. Fairness properties

are properties where something must occur “sufficiently often”. This is an important aspect in most

systems. Finally they consider the complexity of the model checking algorithms of various other

temporal logic languages: BT∗, CTL+ and CTL∗. CTL∗ is of interest since it gives more freedom in
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how temporal operators and path quantifiers are used allowing both linear-time and branching-

time temporal logic formulas to be expressed.

Emerson and Lei in [27] again compare linear-time and branching-time temporal logic and ques-

tion which one of the two logics is better for concurrent systems where non-determinism exists.

They say that in linear-time temporal logic although the universal quantifier is not used it is im-

plied since in this logic only one future is concerned and to achieve this quantification over all

possible futures must be done. Branching-time temporal logic on the other hand allows the possi-

bilities of existential quantification as well. Thus while branching-time temporal logics often allow

AX, EX, AF, EF, AG, EG, AU and EU, linear-time temporal logics often allow (A)X, (A)F, (A)G and

(A)U. Apart from this difference Emerson and Lei state that unlike branching-time temporal logic,

linear-time temporal logic is able to handle fairness without any change being required. Referenc-

ing work by Pnueli and Lichtenstein (see [27] for an indication of the paper at hand), they say that a

linear-time temporal logic model checking exists which is quadratic in the model and exponential

in the formula length. They also argue that CTL∗ is more expressive than any linear-time temporal

logic language due to the fact that it allows the use of A or E to be followed by any formula of

linear-time temporal logic which is not restricted in any way. Thus they show that restricting one-

self to linear-time temporal logic is unnecessary as it proves of no advantage over the equivalent

branching-time temporal logic language. One final interesting point raised by Emerson and Lei

is the one also found in [21]: instead of viewing CTL as a sublanguage of CTL∗ it can be viewed

as a sub-language of the propositional µ-calculus. The µ-calculus allows us to represent temporal

operators using a recursive definition by means of the fixpoint operators µ and ν [27].

4.5 Temporal Logic Properties

The properties expressed by the various temporal logics may be categorised based on the kind

features the properties wish to verify on the system at hand. During the development of model

checking various categories have emerged. Some of the most prominent ones are:

Safety Properties — these kind of properties have been described by Lamport [33] as asserting

that “something bad never happens”. The properties are often characterised by the globally temporal

operator (G) since it allows us to assert that a property always holds on a path: i.e. that something
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bad never happens to cause the property at hand to fail. There properties ensure that the system

never reaches a state which although in the state-space, is invalid for the system. A simple example

in the case of our domain of study is a tictactoe board where each board location is marked with

a cross. This board state is invalid since it cannot be reached by any gameplay which follows the

game’s rules. A safety property can be written which allows us to check that such a state is never

reached, i.e. that all board states at hand are valid ones. If we can define what a valid board state

is and refer to this definition by valid state we can write the safety property AGvalid state which

means that for all computation paths, and all the states on such paths, the board state is a valid

one.

Liveness Properties — again by Lamport, these properties assert that “something good must even-

tually happen”. To achieve these properties we need to express the concept of eventuality. As one

would expect the temporal operator finally (F) is often used as part of the property to achieve this.

This is due to the fact that when it is used in a property it expresses the need for the property to be

eventually true along a path, i.e. that the property will be eventually/finally true along the path.

These properties allow us to show that the system at hand does reach a certain kind of states. In our

case an example of liveness property would be one that verifies that both players may win even-

tually the game: i.e. that the game is not biased to allow only one player to win. If we can define

what it entails for either of the two players to win by the designation (player1 win ∨ player2 win)

we can write the liveness property required as AF(player1 win ∨ player2 win) which means that

on all paths there is always finally a state where either player one or player two wins. An even

better example of liveness properties is another property based on AF(player1 win∨ player2 win)

which is AG(empty board → AF(player1 win ∨ player2 win)). Using the definition empty board

which refers to the start state (this is usually an empty board in our case), in this property we are

saying that in all states of all the computation paths of the system, it is true that starting from the

empty board all computation paths lead to a state where either of the two player wins.

An important subcategory of liveness properties are fairness properties. A fairness property is one

which is “assumed to hold infinitely often along all computations paths” [37]. These properties are often

used to verify other properties which are typically liveness properties. These other properties are

verified not directly on the model itself but on the fair paths designated by the fairness properties.

Fairness properties usually require the use of both the G and F directly combined. This fact makes
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certain languages unable to express fairness properties. An example of this was mentioned in

Section 4.4 when we discussed CTL briefly. CTL requires a change in its semantics to allow such

properties to be expressed. Other languages such as CTL∗ and the latter’s derived linear temporal

logic language LTL are able to express fairness constraint directly since G and F may be combined

in such logics.

4.6 Temporal Logic Languages

In following sections we will introduce some temporal logic languages which are of interest to our

study. These are the aforementioned languages:

• Computation Tree Temporal Logic — CTL∗

• CTL∗ Branching-time Temporal Logic — CTL

• CTL∗ Linear-time Temporal Logic — LTL

• µ-calculus

LTL and CTL are sublogics of CTL∗ which are restricted to allow the specification of pure linear-

time temporal logic properties and of pure branching-time temporal logic properties respectively.

Since LTL is a pure linear-time temporal logic and CTL is a pure branching-time temporal logic

there are some properties in former which are not expressible in latter and vice versa [20, 25, 33].

As simple examples consider the example formulas given by Clarke et al. in [20]: LTL is unable

to express the CTL formula AG(EF p) while CTL is unable to express the LTL formula A(FG p).

More information on what these formulas mean and how they are derived will be given later

on. Moreover if we combine these formulas by a disjunction we obtain a CTL∗ formula which

neither of them can express—this also implies that CTL∗ is more expressive than the two languages

combined.

The propositional µ-calculus may be used to express temporal logic formulas. By means of its

fixpoint operators we are able to use a recursive definition which represents a specific set of states

of the state-space we wish to verify. This set of states contains the states where the µ-calculus

formula is satisfied. Moreover it is possible to represent the temporal operators described above
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using the equivalent fixpoint translation. This practice has been often discussed in various works:

[7, 13, 20, 21, 27, 37]. Emerson and Lei [27] give two adequate examples of a CTL formula and a

CTL∗ formula written as µ-calculus formulas which we reproduce here:

• CTL example: EFp = µZ1. p ∨ EXZ1

• CTL∗ example: EGFp = νZ1. µZ2. EX[(p ∧ Z1) ∨ Z2]

where Z1 and Z2 are atomic proposition variables ranging over a set of states. The CTL formula

expresses a simple liveness property, i.e. there exists a path starting for this state where p is true.

The property expressed by the CTL∗ formula is one which states that starting from this state there

exists a path where p is true infinitely often. This is an example of a fairness property. These

formulas are just quick examples and, as state earlier, the following sections explain in more detail

how they may be formed and what they mean by providing their respective language syntax and

semantics.

4.7 Computation Tree Logic—CTL∗

4.7.1 Introduction

CTL∗ was first introduced by Clarke, Emerson and Sistla in [19]. It is further discussed in [18, 20,

24, 25, 27]. CTL∗ is based on the concept of computation trees. While the state transition graph

of a system is finite in size, if we pick one of the states to be the start state, follow the transitions

possible at each state and record our paths we obtain an tree of infinite size [20]. As an example

consider Figure 4.1. The figure contains a Kripke structure depicting a simple model of a system

and the corresponding infinite computation tree obtained from it. We will now present the syntax

and semantics of CTL∗ based on Clarke et al. in [20].

4.7.2 Syntax

CTL∗ properties are made of a path quantifier (A or E) followed by a formula made up of combi-

nations of the temporal operators G, F, X, U and R described in Section 4.3. Emerson and Halpern

[25], and Emerson and Lei [27] also include two other operators called infinitary state quantifiers

which are abbreviations of commonly used operator combinations. These are:
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Figure 4.1: The finite state transition graph depicted and the computation tree obtained from it

•
∞
Fp — “infinitely often” or GFp

•
∞
Gp — “almost everywhere” or FGp [25]

The syntax of CTL∗ divides the language’s formulas into two types [19, 20, 25]:

• state formulas — these are formulas which are true in a specific state.

The syntax of state formulas follows the three rules below:

– If p ∈ AP , then it is a state formula. (Rem: AP is the set of atomic propostions.)

– If s and t are state formulas, then ¬s, s ∧ t, s ∨ t are state formulas.

– If s is a path formula, then Es and As are state formulas.

• path formulas — these are formulas which are true along a specific path.

The syntax of path formulas follows the two rules below:

– If s is a state formula, then s is also a path formula.

– If s and t are path formulas, then ¬s, s ∧ t, s ∨ t, Xs, Fs, Gs, sUt, sRt,
∞
Fs,

∞
Gs are path

formulas.

Using the above five rules allows us to generate all of the formulas for CTL∗ .
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4.7.3 Semantics

Various authors [18–20, 24, 25] define the semantics of CTL∗ with respect to a Kripke structure.

Note that:

• πi is used to denote the part, or more accurately suffix of π starting at si.

• M, s |= s, where s is a state formula means that the latter holds at state s in the Kripke

structure M .

• M,π |= t, where t is a path formula means that the latter holds along path π in the Kripke

structure M .

The |= relation is inductively defined using a number of rules. Assuming s1 and s2 are state for-

mulas and t1 and t2 are path formulas:

1. M, s � p ⇔ p ∈ L(s)

2. M, s � ¬s1 ⇔ M, s 2 s1

3. M, s � s1 ∨ s2 ⇔ M, s � s1 or M, s � s2

4. M, s � s1 ∧ s2 ⇔ M, s � s1 and M, s � s2

5. M, s � Et1 ⇔ there is a path π from s such that M,π � t1

6. M, s � At1 ⇔ for every path π starting from s, M,π � t1

7. M,π � s1 ⇔ s is the first state of π and M, s � s1

8. M,π � ¬t1 ⇔ M,π 2 t1

9. M,π � t1 ∨ t2 ⇔ M,π � t1 or M,π � t2

10. M,π � t1 ∧ t2 ⇔ M,π � t1 and M,π � t2

11. M,π � Xt1 ⇔ M,π1 � t1

12. M,π � Ft1 ⇔ there exists a k ≥ 0 such that M,πk � t1

13. M,π � Gt1 ⇔ for all i ≥ 0, M,πi � t1

14. M,π � t1Ut2 ⇔ there exists a k ≥ 0 such that M,πk � t2 and for all 0 ≤ j < k, M,πj � t1

15. M,π � t1Rt2 ⇔ for all j ≥ 0, if for every i < j M, πi 2 t1 then M,πj � t2

16. M,π �
∞
Ft1 ⇔ for infinitely many distinct i, πi � t1

17. M,π �
∞
Gt1 ⇔ for almost every distinct i, πi � t1
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4.7.4 Minimal Set of Operators

The operators ∨, ¬, X, U, E are enough to express all the possible CTL∗ formulas. [18–20, 24, 25, 27].

Using the following equivalences we can simplify the syntax and semantics of CTL∗ at the cost of

decreasing readability. Assuming f1 and f2 are CTL∗ formulas:

• f1 ∧ f2 ≡ ¬(¬f1 ∨ ¬f2)

• f1Rf2 ≡ ¬(¬f1U¬f2)

• Ff1 ≡ TrueUf1

• Gf1 ≡ ¬F¬f1

•
∞
Ff1 ≡ GFf1

•
∞
Gf1 ≡ ¬

∞
F¬f1

• A(f1) ≡ ¬E(¬f1)

4.7.5 Examples

Some example CTL∗ formulas are as follows:

• AF p — in all the paths of the system, p eventually holds.

• E(AX p) — there exists states where for all the next states p is true.

• AG (AF p ∨ E(AX p)) — the disjunction of the above formulas is true for all the states on all

the paths of the system.

4.8 CTL∗ Branching-time Temporal Logic—CTL

4.8.1 Introduction

As mentioned earlier, CTL is the branching time sub-logic of CTL∗ [20]. Clarke and Emerson intro-

duced CTL and CTL model checking in [21]. More papers which refer to CTL are [13, 18, 19, 26, 27,

37]. In CTL we restrict CTL∗ by imposing a rule on temporal operators. A path quantifier E and A

must lie in front of every temporal operator F, G, R, U and X at all times. Needless to say in CTL
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∞
F and

∞
G are not allowed due to this restriction. Hence in order to obtain CTL syntax from CTL∗

syntax we must change the following rule:

– If s and t are path formulas, then ¬s, s ∧ t, s ∨ t, X s, F s, G s, s U t, s R t,
∞
F s,

∞
G s are path

formulas.

into

– If s and t are path formulas, then ¬s, s ∧ t, s ∨ t, X s, Fs, Gs, sUt, sRt are path formulas.

and add this rule to the path formula rules:

– If s and t are state formulas, then Xs, Fs, Gs, sUt and sRt are path formulas. [20]

Moreover, the semantics of CTL∗ must be altered by removing the last two inductive rules con-

cerning
∞
F and

∞
G.

The final result or these restrictions is that in CTL formulas are composed of the path quantifier—

temporal operator pairs: AX, EX, AF, EF, AG, EG, AR, ER, AU and EU. The meaning of these

operator pairs [13, 19, 21] is as follows:

• AXf1 — the formula f1 holds in every state following the current state.

• EXf1 — the formula f1 holds in one or more states following the current state.

• AFf1 — the formula f1 eventually holds in all the paths originating from the current state.

• EFf1 — the formula f1 eventually holds in one or more paths originating from the current

state.

• AGf1 — the formula f1 holds on every state of every path starting from the current state.

• EGf1 — the formula f1 holds on every state of one or more paths starting from the current

state.

• A[f1Rf2] — for all paths starting from the current state, f2 is true in the states of the path. It

is possible that at a state on the path f1 is also true. If this occurs f1, “releases” f2 and f2 no

longer remains true in the subsequent states.
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• E[f1Rf2] — for one and more paths starting from the current state, f2 is true in the states of

the path. It is possible that at a state on the path f1 is also true. If this occurs f1, “releases” f2

and f2 no longer remains true in the subsequent states.

• A[f1Uf2] — for all paths starting from the current state, f2 is true in the path following an

initial prefix of states in which f1 is true.

• E[f1Uf2] — for one or more paths starting from the current state, f2 is true in the path fol-

lowing an initial prefix of states in which f1 is true.

4.8.2 Syntax

The syntax of CTL may be described in terms of CTL∗ syntax as shown above. However it is

possible to obtain a more compact syntax by using just three of the possible path quantifier—

temporal operator pairs (EX, EG and EU) and then represent the rest of the pairs (AX, AG, AU,

EF, AF, ER and AR) using a number of identities [13, 37]. The compact syntax is as follows:

– Every atomic proposition p ∈ AP is a CTL formula.

– If f1 and f2 are CTL formulas, then ¬f1, f1 ∧ f2, EXf1, E[f1Uf2] and EGf1 are CTL formulas

as well.

Assuming f1 and f2 are CTL formulas, the rest of the operator pairs can be expressed in terms of

EX, EG and EU as follows [13, 20, 37]:

• AXf1 = ¬EX(¬f1)

• EFf1 = E[TrueUf1]

• AGf1 = ¬EF(¬f1)

• AFf1 = ¬EG(¬f1)

• A[f1Uf2] ≡ ¬E[¬f2U(¬f1 ∧ ¬f2)] ∧ ¬EG¬f2

• A[f1Rf2] ≡ ¬E[¬f1U¬f2]

• E[f1Rf2] ≡ ¬A[¬f1U¬f2]
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4.8.3 Semantics

In this section we give the semantics of CTL formulas for the more compact syntax presented in

the previous section. This is done in terms of a Kripke structure as was done previously with CTL∗

formulas. We use the notation: M, s |= f , which means that the CTL formula f holds at state s

in the Kripke structure M . Assuming f1 and f2 are CTL formulas, the |= relation is inductively

defined as follows [19]:

1. M, s � p ⇔ p ∈ L(s)

2. M, s � ¬f1 ⇔ M, s 2 f1

3. M, s � f1 ∨ f2 ⇔ M, s � f1 or M, s � f2

4. M, s � f1 ∧ f2 ⇔ M, s � f1 and M, s � f2

5. M, s � EXf1 ⇔ for some state t such that (s, t) ∈ R, M, t � f1

6. M, s � EGf1 ⇔ for one or more paths of the form (s0(= s), s1, s2, . . .),

∀i[i ≥ 0 ∧M, si |= f1]

7. M, s � E[f1Uf2]⇔ for one or more paths of the form (s0(= s), s1, s2, . . .),

∃i[i ≥ 0 ∧M, si |= f2 ∧ ∀j[0 ≤ j < i→M, si |= f1]]

4.8.4 Examples

Some example CTL formulas are as follows:

• EF p — there exists a path where eventually p is true.

• AG (p⇒ AF q) — it is always the case that if p is true, q is always eventually true.

• EX (AX p) — there exists a state following the current one where in all the next states p is

true.
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4.9 CTL∗ Linear-time Temporal Logic—LTL

4.9.1 Introduction

Clarke et al. [20] tell us that LTL as a temporal logic was first introduced by Pnueli and that it

can be derived as a sub-language from CTL∗ by restricting the former’s rules to quantify over all

paths of the system. Due to this restriction, LTL formulas cannot use the existential path quantifier

E. Instead they allow only the universal path quantifier A which is sometimes just implied and

not written as part of the formula [27]. Unlike CTL , LTL allows us to combine temporal operators

together (such as for example AGF) and hence it cannot be defined just in terms of operator pairs

like CTL . This latter fact LTL shares with its parent language CTL∗ .

4.9.2 Syntax

We define the syntax of LTL in terms of the syntax of CTL∗ as per Clarke et al. in [20]. LTL formulas

take the form Af where f is a restricted path formula. The restriction imposed on this formula is

that its state subformulas are only atomic propositions, i.e.:

– If p ∈ AP , then p is a path formula.

– If s and t are path formulas, then ¬s, s∨ t, s∧ t, Xs, Fs, Gs, sUt, and sRt are path formulas as

well [20].

4.9.3 Semantics

The semantics of LTL formulas are once more given in terms of a Kripke structure. The relation

|= can be defined inductively using the same CTL∗ semantic rules 8–17 shown in Section 4.7 and

changing rule 7 as follows:

7. M,π � p ⇔ s is the first state of π and p ∈ L(s)

4.9.4 Example

Some example LTL formulas are as follows:
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• AX p — for all next states p is true.

• A(p U q) — for all paths, p is true until q is true.

• A(FG p) — for all paths, eventually there is a state where p is true and from then onwards p

is true.

4.10 µ-Calculus

4.10.1 Introduction

The µ-calculus was introduced by Kozen as a general purpose logic system which extended propo-

sitional modal logic1 by the least fixpoint operator µ and consequently the greatest fixpoint opera-

tor ν by duality [5, 20]. By means of the fixpoints of µ-calculus we are able to reason about a set of

states at a time. The µ-calculus was later on applied to model checking in various ways:

• Various temporal logics used in model checking can be encoded in µ-calculus [20].

• Efficient model checking algorithms exist for µ-calculus [20].

• The µ-calculus can be itself viewed as a temporal logic which subsumes other previously

defined temporal logics (see references found in [5]).

• Since temporal logics can be translated into µ-calculus and model checking algorithms for µ-

calculus are very efficient it is possible to perform efficient automatic verification of temporal

logics by first translating them into µ-calculus [20].

• The µ-calculus aids in symbolic model checking making use of OBDD representation. As

mentioned in previous sections, an OBDD represents the set of states which are true for the

particular relation. It is thus extremely useful in symbolic model checking to reason about

such sets of states using µ-calculus [20].

Many various forms of µ-calculus exist [20]. Two such calculi are Park’s and Kozen’s used in

[13, 37] and [5, 9, 10, 20] respectively. Both of these have been applied to model checking in most

of the papers just mentioned. In the following sections we will provide the syntax and semantics

1Modal logic is the study of “necessity” and “possibility”. Temporal logic is often considered to be modal logic
applied to the notion of time.
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of Kozen’s mu-calculus as given by Clarke et al. [20] which is very similar to that found in [5].

The notation used in [9, 10] differs slightly but the syntax and semantic provided in these papers

should result in the same temporal logic language.

The syntax and semantics of µ-calculus are given in terms of a transition system such as a Kripke

structure. However, the definition of the Kripke structure given earlier is changed from M =

(S, S0, R, L) to M = (S, T, L). Instead of the transition relation R we will use a set of transition

relations T . Each element in T , referred to by a, is a transition. Formally M is defined as:

– S is a nonempty set of states.

– T is a set of transitions, such that every transition a ∈ T, a ⊆ S × S.

– L : S → 2AP is a function that labels each state with the set of atomic propositions which are

true in that state. [20]

Apart from the Kripke structure we also require a set of relational variables RV = {Q1, Q2, Q3, . . .}.

Each relation variable is assigned a subset of S [20].

4.10.2 Fixpoint Representation

Before we present the syntax and semantics of µ-calculus we describe what the fixpoint operators

µ and ν represent in terms of the Kripke structure M = (S, R,L) described earlier, or more impor-

tantly in terms of the set of states S of the system. As we mentioned earlier we are interested in

reasoning about sets of states which are true for a particular temporal logic formula as this allows

us to use said formula to verify properties about a system. One should also remember that a set of

states can be represented by a formula which is satisfied by such states.

The building of the required set of states which satisfies a temporal logic formula is not done in one

step. Instead an iterative method is used to build it by using a recursive definition. Initially, the

recursive definition provides us with a predicate which represents a rough approximation of what

the required set of states is. Building on this rough approximation, we refine the predicate (through

the recursive definition) and subsequently add or remove states to the current set of states so as to

create a new set which satisfies the new refined formula. In this way our approximation becomes

increasingly more accurate and in line to the actual required temporal logic formula. When the
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approximations no longer cause a change in the set of states, the required set of states has been

obtained. The lack of change in the set of states due to the approximations is known as a fixpoint.

When building a fixpoint we usually start from the empty set or from the whole set S. Depending

on the case we then respectively add states to or remove states from the set. The type of fixpoint

reached depends on whether we start from the empty set or the set S. Starting from the empty

set we reach the least fixpoint µ. Conversely, starting from the set of states we reach the greatest

fixpoint ν.

As an example we will show how the CTL formula EFp can be expressed using fixpoints and show

the approximations required to derive it. In terms of fixpoints EFp corresponds to the least fixpoint

of f1 ∨ EXZ, i.e.

EFp = µZ.p ∨ EXZ

Since we are dealing with the case of an eventuality, and not something which is global it makes

sense to start from something smaller, i.e. from the empty set. That will be our first approximation.

In the case of EGp it would make more sense to start with the full set of states and then remove the

unnecessary states. Returning to our EFp example, the approximations required are as follows:

1st Approximation: EFp ' False

2nd Approximation: EFp ' p

3rd Approximation: EFp ' p ∨ EXp

4th Approximation: EFp ' p ∨ EX(p ∨ EXp)

5th Approximation: EFp ' p ∨ EX(p ∨ EX(p ∨ EXp))

6th Approximation: EFp ' p ∨ EX(p ∨ EX(p ∨ EX(p ∨ EXp)))

7th Approximation: . . .

The number of approximations required depends solely on whether the number of states in the set

represented by the predicate have changed from one approximation to the next. Diagrammatically

the sequence of approximations required to verify EFp on an example Kripke structure is shown

in Figure 4.2.

Each step of our iterations can be viewed as a function which maps a member in the power set

of S, P(S), to another member in P(S) or more formally, T : P(S) → P(S) [20]. This function is

known as a predicate transformer since by changing an input set of states into another set of states
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Figure 4.2: Sequence of approximations for EFp. At the fifth approximation p∨EX(p∨EX(p∨EXp))
we obtain EFp for this system.

it in fact alters the input predicate into another predicate. Moreover, since it is a function, the µ

and ν fixpoints we require can be interpreted as fixpoints of a function.

In order for our function to be able to have its required fixpoints there are four requirements [20]:

• The power set of S, P(S) must form a lattice under set inclusion ordering.

• T must be monotonic — if P1 is a subset or is equal to P2 this implies that after applying the

predicate transformer T to P1 and P2 the obtained set T (P1) is still a subset or equal to the

obtained set T (P2), i.e. P1 ⊆ P2 implies T (P1) ⊆ T (P2).

• T must be ∪-continuous — if P1, P2, P3, . . . is a an infinite sequence of sets of states where

Pi ⊆ Pi+1 this implies that the set obtained by the union of such sets and using the predicate

transformer on the result is equal to the union of the sets obtained by applying the predicate

transformer on such sets individually, i.e. P1 ⊆ P2 ⊆ . . . implies T (∪iPi) = ∪iT (Pi).

• T must be ∩-continuous — if P1, P2, P3, . . . is a an infinite sequence of sets of states where

Pi ⊇ Pi+1 this implies that the set obtained by the intersection of such sets and using the

predicate transformer on the result is equal to the intersection of the sets obtained by ap-

plying the predicate transformer on such sets individually, i.e. P1 ⊇ P2 ⊇ . . . implies
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T (∩iPi) = ∩iT (Pi).

Due to the above requirements, Clarke et al. [20] tell us that by a result of Tarski 2, T has:

• A least fixpoint, µZ.T (Z), since when T is monotonic µZ.T (Z) = ∩{Z|T (Z) ⊆ Z} and when

T is ∪-continuous µZ.T (Z) = ∪iT i(False).

• A greatest fixpoint, νZ.T (Z), since when T is monotonic νZ.T (Z) = ∪{Z|T (Z) ⊇ Z} and

when T is ∩-continuous νZ.T (Z) = ∩iT i(True). [20]

This provides us with a function which has a least and greatest fixpoint as required. Note that

T i(Z) denotes i applications of T to Z [20].

4.10.3 Syntax

The syntax which generates µ-calculus formulas is as follows:

• If an atomic proposition p ∈ AP , then p is a formula.

• If a relation variable Q ∈ RV , then Q is a formula.

• If f1 and f2 are formulas, then ¬f1, f1 ∧ f2 and f1 ∨ f2 are formulas.

• If f1 is a formula, and a ∈ T , then [a]f1 and 〈a〉f1 are formulas.

• If Q ∈ RV and f1 is a formula, then µQ.f1 and νQ.f1 are formulas. [5, 20]

The last syntactical rule is restricted by the fact that f1 has to be syntactically monotone3[5, 20]. The

formula 〈a〉f1 means that it is possible to make a transition using a from the current state to a state

where f holds. The formula [a] means that all transitions using a from the current state lead to

states where f holds. The operators µ and ν represent the least and greatest fixpoints, respectively.

4.10.4 Semantics

A formula f1 generated by the rules above corresponds to a set of states written as Jf1KMe, where

M is a transition system and e : RV → 2S is an environment. By [20] the recursive definition of

Jf1KMe is:
2Refer to Clarke et al. [20] for further reading on Tarski’s result.
3This means that Q occurs under an even number of negations in f1.
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1. JpKMe = {s|p ∈ L(s)}

2. JQKMe = e(Q)

3. J¬f1KMe = S \ Jf1KMe

4. Jf1 ∧ f2KMe = Jf1KMe ∩ Jf2KMe

5. Jf1 ∨ f2KMe = Jf1KMe ∪ Jf2KMe

6. J〈a〉f1KMe = {s|∃t[(s, t) ∈ a and t ∈ Jf1KMe]}

7. J[a]f1KMe = {s|∀t[(s, t) ∈ a implies t ∈ Jf1KMe]}

8. JµQ.f1KMe is the least fixpoint of the predicate transformer T (W ) = Jf1KMe[Q←W ],

JµQ.f1KMe =
⋃

i T i(False).

9. JνQ.f1KMe is the greatest fixpoint of the predicate transformer T (W ) = Jf1KMe[Q←W ],

JνQ.f1KMe =
⋂

i T i(True).

Where e[Q ← W ] is a new environment that is the same as e except that in we substitute Q by W

and T i(Q) is defined recursively as T 0(Q) = Q and T i+1(Q) = T (T i(Q)) [20]. Since all logical

connectives are monotonic apart from negation, the latter is restricted in use. In fact negation is

used by pushing this operator down to the level of atomic propositions by means of a number of

laws and equivalences:

• De Morgan’s Laws

• ¬[a]f ≡ 〈a〉¬f

• ¬〈a〉f ≡ [a]¬f

• ¬µQ.f(Q) ≡ νQ.¬f(¬Q)

• ¬νQ.f(Q) ≡ µQ.¬f(¬Q)

The above laws and equivalences help to guarantee the existence of fixpoints (see [20] for more

information on this subject and where to find further reading) and may also be used to produce a

more compact syntax and semantics for µ-calculus [5].

4.10.5 Fixpoint characterisation of CTL Formulas

As mentioned earlier in Section 4.10.2 µ-calculus formulas can be used to characterise the for-

mulas of various other temporal logics formulas by means of fixpoints [9, 10, 20]. For example,
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µ-calculus can provide the fixpoint characterisation of the operators of CTL [20, 21, 37] allowing

CTL to be model checked using µ-calculus model checking. Since it subsumes other logics, it is able

to characterise other temporal logic languages, however in our study we are mostly interested in

the characterisation of CTL formulas which is achieved as follows:

• AFf1 = µZ.f1 ∨AXZ

• EFf1 = µZ.f1 ∨ EXZ

• AGf1 = νZ.f1 ∧AXZ

• EGf1 = νZ.f1 ∧ EXZ

• A[f1Uf2] = µZ.f2 ∨ (f1 ∧AXZ)

• E[f1Uf2] = µZ.f2 ∨ (f1 ∧ EXZ)

• A[f1Rf2] = νZ.f2 ∧ (f1 ∨AXZ)

• E[f1Rf2] = νZ.f2 ∧ (f1 ∨ EXZ)

The operator pairs AF, EF, AU and EU deal with eventualities and so are characterised using a

least fixpoint. Greatest fixpoints on the other hand are used in the case of operators that cause a

property to hold forever such as AG, EG, AR and ER [20].

4.11 Other Temporal Logics

Various other temporal logics exist apart from the ones we discussed here. Some of these are

derived from CTL∗ and CTL such as ACTL∗ and ACTL , respectively. Others such as alternating-

time temporal logic (ATL) differ from other logics by their very nature.

• ACTL∗ — ACTL∗ is CTL∗ restricted to universal path quantifiers. An example of an ACTL∗

formula is AGF p.

• ACTL — ACTL is CTL restricted to universal path quantifiers. An example of an ACTL for-

mula is AF AG p.
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• ATL — Alternating-time temporal logic is of special interest to us even though it was not

included in our study. As a logic it “offers selective quantification over those paths that are pos-

sible outcomes of games” [2][p.672] and can be viewed as the generalisation of existential and

universal branching time logic [2]. ATL considers concurrent games in which at each state all

players make their moves and the successor state is determined by combining all the play-

ers’ moves. Special cases of such concurrent games are: turn-based synchronous, turn-based

asynchronous and Moore synchronous [2] of which the most interesting to us are turn-based

synchronous since in these at each state one player has a choice of moves and the player

at hand is determined by the state itself. An interesting application of this ATL model type

would be turn-based board games which we explore in our study.

4.12 Conclusion

This chapter has introduced various temporal logics which may be used for the specification of

properties. The temporal logics we discussed may be divided into branching-time (example CTL)

and linear-time (example LTL) with the exception of ATL which introduces another form of logic

called alternating-time logic. Apart from this we also introduced µ-calculus which we know su-

persedes CTL and LTL in expressiveness. Since our study compares CTL and µ-calculus we have

focused on these two logics. CTL∗ and LTL were also introduced due to their close relationship to

CTL .

As we shall see in the following chapter the properties written using a temporal logic may be au-

tomatically verified on a model of a system if the appropriate algorithms are used. The following

chapter discusses these algorithms and also introduces a number of model checkers which imple-

ment such algorithms.



CHAPTER 5

VERIFICATION

The meaning of a proposition is

the method of its verification.

Moritz Schlick

5.1 Overview

We will now briefly consider the last stage of model checking, i.e. verification. In this stage an algo-

rithm is used to automatically verify a specified property on a modelled system by considering all

possible computation paths. If the property is satisfied by the model, model checking will indicate

this fact. Otherwise using appropriate algorithms, if possible, counterexamples or witnesses are

produced accordingly. If an error trace is provided, this can help locate the source of error in the

model and hence the actual system. In this way the errors found in the system may be resolved.

This procedure can be carried out until the required specification formulas are satisfied and hence

the system is verified through the model.

5.2 Introduction

For model checking-based verification to be automatic we need an algorithm which given a struc-

ture (the model) representing a system and a temporal logic formula expressing a property of

the structure, is able to find the part of the structure (more specifically the set of states in the
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structure) which satisfies the temporal logic formula. More formally, given the Kripke structure

M = (S, S0, R, L) and the temporal logic formula f an algorithm is required which computes the

set {s ∈ S|M, s |= f} [20].

5.3 Enumerative Model Checking

In model checking algorithms, the structure upon which the algorithm works is often a graph. In

enumerative model checking the graph is one where the nodes represent the states of the Kripke

structure while directed arcs going from one node to another node represent the transitions of

the Kripke structure. Moreover, the labelling function L of the Kripke structure is represented in

the graph by labels on the nodes which reflect this function. The algorithm for enumerative model

checking works by labelling the nodes in the graph which satisfy the temporal logic formula, hence

allowing us to obtain the required set of states. The approach used is iterative and breaks down

the temporal logic formula we require into simpler, nested formulas, which we model check one at

a time, working progressively outwards. Once the outer formula is reached we have checked the

actual formula we had set out for in the first place[20]. For example consider AF (p→ (q∧r)). This

formula is checked by first finding the states which satisfy p, q and r, then q ∧ r, then (p→ (q ∧ r))

onwards until the actual formula is model checked.

5.4 Symbolic Model Checking

For symbolic model checking using OBDDs the structure is also a graph. As described earlier the

graph represents the transitions of the system. Each node represents a variable of the characteristic

function representing the transition relation. The left and right outgoing directed arcs from each

node represent the node’s variable assignment to 0 and 1 respectively. The OBDD graph satisfying

the temporal logic formula f is the result we wish to obtain from a symbolic model checking

algorithm. Such an OBDD would represent the required set of states which satisfy our temporal

logic formula. Symbolic model checking achieves this through a algorithm which uses fixpoints to

recursively obtain an OBDD representing the set of satisfied states.
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5.5 Counterexamples and Witnesses

Model checking has the ability to provide us, when possible, a counterexample or witness trace. A

counterexample trace can be obtained when a property involving universal quantification is false.

The trace contains states of the model visited before reaching a state which does not fit the specifi-

cation (an error state), i.e. it proves that the negation of the property is true and hence the property

is not true for all computation paths as required by universal quantification. A witness trace is

obtainable when a property involving existential quantification is true. It provides a computation

path where the property is true, i.e. it proves the that the property is true by an example where

this is so. [20, 24]

5.6 Algorithms for Model Checking

Algorithms have been created to model check models specified using various temporal logics.

These have been later on implemented in various model checkers. We refer the reader to a list or

papers discussing possible model checking algorithms for various temporal logics:

• CTL Model Checking: Refer to [13, 18–21, 24, 26, 37]

• LTL Model Checking: Refer to [20, 24]

• CTL∗ Model Checking: Refer to [20]

• µ-calculus Model Checking: Refer to [7, 8, 13, 20, 37]

5.7 Model Checking Tools

5.7.1 Introduction

In this section we will introduce and provide a brief overview of a few model checkers we have

considered for our research. These are SPIN, Mocha, SMV and µcke. Of these model checkers we

will focus more on the latter two: SMV and µcke as they provide us with the temporal logics we

require for our study, CTL and µ-calculus respectively.
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5.7.2 SPIN

SPIN is a model checker whose modelling language is based on another language called PROMELA

and which proves properties of such models using specifications written in the linear temporal

logic LTL [31]. As a model checking program it consists of various intercommunicating modules

which parse a model written in the input modelling and specification language, verify it and pro-

vide, when possible, counterexample traces. SPIN is not based directly on work by Clarke and

Emerson and by Sifakis and Queille mentioned earlier but on an extension of such work by Vardi

and Wolper which makes use of Büchi automata (refer to [20, 31] for more information on where

to follow-up on this work). The end result is still a complete check of the states of the global reach-

ability graph hence resulting in performance issues if the state space is large. SPIN makes use of

various optimisations to mitigate this including in the nested depth-first search used to perform

the exhaustive search in the state space, efficient translation of LTL formulas to Büchi automata, a

technique called partial order reduction which attempts to reduce the reachability graph and ef-

ficient memory management. We again refer the reader to [20, 31] for more information on these

subjects.

5.7.3 Mocha

Mocha differs from other model checkers by the fact that it achieves its modelling by means of

reactive modules instead of the traditional state-transition diagram. Reactive modules are modules

which contain both states and transitions in them, which react to one another [3][p.2]. The reactive

modules used to model a system are specified in a machine readable variant input language of the

modules. The specification language on the other hand is ATL which we described in Section 4.11.

Two verification methodologies are used: compositional verification and hierarchical verification

[3]. A few of the functionalities provided by Mocha are: simulation, enumerative and symbolic

invariant model checking, counterexample generation, compositional refinement checking, ATL

model checking and reachability analysis of real-time systems. For more information regarding

these topics please refer to [3].
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5.7.4 SMV

Introduction

SMV is a model checker which comes in many different versions. It was originally developed by

McMillan for his thesis on OBDD-based symbolic model checking [20, 37]. This version of SMV

uses its own language for modelling and allows specifications using CTL . McMillan then produced

another version while working at Cadence Berkley Labs which he named Cadence SMV. Cadence

SMV adds some features to the original SMV while still retaining backwards compatibility. One of

the most important of these features is LTL model checking [38, 39]. Cadence SMV has its own C-

like language which differs from the one of the original SMV. Another version of SMV is NuSMV,

developed by a collaboration between ITC-IRST, Carnegie Mellon University, the University of

Genova and the University of Trento. As a model checker NuSMV contains various new additional

functionalities to SMV such as SAT-based model-checking and allows specifications to written in

various languages, amongst which are LTL and CTL . Its modelling language is very similar to the

one of the original SMV. Refer to [14–17] for more technical details. In the following sections we

will focus on the Cadence version of SMV as this is the model checker we used for our study.

Techniques

SMV implements a number of algorithms [37]:

• Algorithms for the computation of the reachable set of states in one step from a set of states.

• Algorithms that avoid the construction of the global transition relation such as incremental

transition relation generation, partitioning and modified breath-first search.

• Algorithms to speed up the computation such as forward analysis and frontier set simplifi-

cation.

• Algorithms for counterexample generation.

Features

Cadence SMV has a number of interesting features. Some of the more prominent ones are [20, 39]:
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• Modules — The model of the system may be broken down into separate modules which can

have multiple instances at any one time. Such modules are able to see each other’s variables

according to standard hierarchical visibility rules. Modules may have state variables, input

variables, output variables, transition relation definitions, CTL and LTL formula definitions

and so on.

• CTL and LTL model checking — Cadence SMV allows the specification of both LTL and

CTL properties since it implements the algorithms required to model check systems specified

using these languages.

• Synchronous composition — SMV assumes synchronous component transition, that is, that

all components of the system change state together in a single step.

• OBDD modelling — Cadence SMV employs symbolic model checking using OBDDs.

• Interleaved composition — Using an appropriate keyword it is possible to stop synchronous

composition and force interleaving of processes, whereby only one component of the system

changes its state in a transition.

• Deterministic and non-deterministic transitions — The state transitions maybe be modelled

both deterministically and non-deterministically depending on the need. Non-deterministic

choices are useful when there is the need to model cases where more than one possible tran-

sition can occur starting from a certain system state.

• Transition relations — Transition relations can be specified both explicitly or implicitly. Ex-

plicitly defined transitions are written in terms of Boolean relations on the current and next

state values of the components of the state. Implicit ones are written using assignment state-

ments which occur in parallel and which define the values of next state of the system in terms

of the value of the current state.

• Set expressions — SMV has a set expression which can be used to build sets according to

need by means of a compact definition. This is especially useful when building a set which

represents the possible non-deterministic choices based on the values of the state. This fea-

ture is only available in Cadence SMV and not in the original or NuSMV.
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Language

Cadence SMV’s ability to be backwards compatible with the original SMV made it our choice

language with which to write our SMV models. Not only it allows CTL formulas to be written

(which is a main interest to us), but it also allows us to use the set expression which we found most

useful for our models. In this section we introduce some of the most important semantics of the

expressions available in SMV without going much into the syntax of the language. For features

which SMV shares with other languages and for a more thorough explanation of the syntax and

semantics of Cadence SMV we refer the reader to [38, 39].

• Data types and type declarations — SMV’s base type is the Boolean or the set {0, 1} repre-

senting False and True, respectively. Using this type it is possible to construct more complex

data types which are known as enumerated and ranged types. Enumerated types consist of

sets of symbolic values while ranged types consists of ranges of integers. These types are in-

ternally represented as combinations of Boolean variables. Arrays and defined types (structs)

similar to those found in C are also possible.

• Expressions — an expression consists of the required combination of the state variables and

number of operator connectives such as: Boolean operators, conditional operators, arithmetic

operators, comparison operators, set operators and so on.

• Assignments — allow the value of an expression to be assigned to a signal (state, input,

output) variable. Assignments in SMV are carried out in parallel, that is they are all executed

together in one step of the system unless otherwise specified appropriately.

• Delayed Assignments — the value of an expression to be assigned to the delayed (next)

signal, that is the signal in the state following this one can be achieved using a specific oper-

ator, the “next” operator. In this way we can define the transitions of the state values for our

model.

• Non-deterministic Assignments — are assignments which allow more than one value to be

selected as the value of the signal at hand. The value is selected arbitrary from a set of values.

This allows us to define models where the next state can take a number of equally likely
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values. The model checker attempts the assignment of all such non-deterministic values

during verification.

• Modules — these are definitions which group together related type declarations and assign-

ments that, as explained before, can be reused more than once. Modules also have input and

output parameter signals which allow it, when instantiated, to be plugged into the system as

a complete stand alone component (much like a black-box).

• Set Expressions — these expressions are important as they allow us to compactly define

sets which in turn may be used to allow the definition of non-deterministic assignments.

A set expression may be either written as a list of elements or iteratively built using the

construction {f(i) : i = x..y}where f(i) is an expression containing the parameter i and x..y

is an expression which represents a series of integers from x to y. The model checker then

expands the construction into the set {f(x), . . . , f(y)}. For example: {i×2 : i = 1..5} expands

to the set {2, 4, 6, 8, 10}.

• CTL Expression — as their name implies, these expressions consist of CTL properties which

we use to specify the model we wish to verify.

5.7.5 µcke

Introduction

Armin Biere developed µcke as a product of his dissertation on efficient µ-calculus model checking

using OBDDs. According to [8], Biere developed µcke as a general framework based on work by

Burch et al. in [13]. Using such a framework it would be possible to describe properties which are

not expressible in temporal logics such as LTL and CTL .

Techniques

The µcke model checker has a number of techniques which were first utilised for model checkers

using other temporal logics. These have been then adapted for µ-calculus model checking and

implemented in µcke. A few of these were mentioned earlier for the SMV Model Checker. Apart
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from these µcke adds algorithms for the automatic ordering of BDD variables. See [7, 8] for more

information on these techniques and how they were integrated in µcke.

Features

Some of the features included in the µcke model checker are:

• Class — Synonymous to an SMV Module, the class contains the definition of a component

of the system.

• µ-calculus model checking — The µ-calculus allows the specification of µ-calculus proper-

ties since it implements the algorithms required to model check systems specified using this

temporal logic.

• OBDD modelling — The µcke model checker employs symbolic model checking using OB-

DDs.

• Initial state definition — Initial states can be specified explicitly using a Boolean relation.

• Transition relation definition — The transition relation may be written explicitly using a

Boolean relation in terms of the current and next state.

Language

The µcke model checker has an input language which is very similar to that of C and C++. Again,

as with SMV, we will present some of the possible language expressions allowed in µcke without

presenting the full syntax and semantics. For more information refer to [7, 8]:

• Data types and type declarations — µcke’s base type is the Boolean or the set {0, 1} repre-

senting False and True, respectively. The base type allows us to construct more complex

data types such as enumerated and ranged types. These are similar to the ones available for

SMV. Arrays and defined types (structs) similar to those found in C are also possible.

• Boolean Relations — these allow us to define a set of states of the system such as for example

the set of initial states.
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• Transition Relations — these allow us to define the transitions of the variables of the system,

hence allowing us to define the transition relation. In order to achieve this a Boolean relation

is written in terms of the current and next state.

• Lower and Upper Fixpoints — by means of the upper and lower fixpoint reserved keywords,

we are allowed to write Boolean Relations which have upper and lower fixpoints. These in

turn allow us to write µ-calculus formulas which we use to specify the properties of the

system.

• Classes — these are definitions which group together related type declarations and assign-

ments that, as explained before, can be reused more than once. Modules also have input and

output parameter signals which allow it, when instantiated, to be plugged into the system as

a complete stand alone component (much like a black-box).

5.8 Conclusion

This chapter has focused on the modelling stage of model checking. We have seen how verification

in model checking may be automated by means of appropriate algorithms for the relevant tempo-

ral logics. Moreover we have discussed some model checkers which implement the algorithms for

CTL (SMV, NuSMV), LTL (Cadence SMV, NuSMV), ATL (mocha) and µ-calculus (µcke).

In the last three chapters we have taken a detailed look at model checking by exploring each of its

stages. We have seen how modelling may be achieved by means of both an enumerative repre-

sentation and symbolical one. We have also explored how specification of properties about such

models may be achieved using temporal logics such as CTL , LTL , CTL∗ and µ-calculus . Finally, we

briefly considered how verification may be automated using appropriate algorithms implemented

in a number of model checkers.

In the next chapter we will show how modelling and specification may be applied for a particular

type of system: game systems. We show how a game may be easily translated into a model by the

use of a Kripke structure, how properties may be written for such models using the temporal logics

mentioned earlier and hence how they can be automatically verified by the use of a model checker.

As an example we make use of a very simple game which we call “tictac”. Tictac is basically a
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simpler version of the tictactoe game which we use as an illustration of how model checking may

be applied to games.



CHAPTER 6

GAMES

You have to learn the rules of the game.

And then you have to play better than anyone else.

Albert Einstein

6.1 Overview

This chapter introduces the main idea proposed in this body of work. Building on the knowledge

acquired in the previous chapter we first show how a game can be viewed as a system with states

and transitions, hence allowing it to be modelled. We then show how properties about a game may

be specified so that the model can be verified by a model checker such as SMV or Mucke. As a

proof of concept we introduce a very simple game and show how it can be modelled and specified

in preparation for verification using the model checkers just mentioned.

6.2 Introduction

The type of games that we will consider in our discussion are standard board games which can be

played by two players such as tictactoe, connect four, chess, checkers and bridget, amongst many

others. In all such games, the main objective is for a player to achieve a goal before the opponent

does. This can be accomplished by making strategic moves on the board which are in the favour

of the player or which hinder the opponent. Each move tries to make the prospect of reaching the
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goal more probable, or tries to hinder the opponent by reducing the probability of them reaching

their goal.

Every game in our category has its own set of rules regarding how the initial setup of the board

is, what moves can be done by the players to lead to a goal and what the goal of the game is in

terms of the state of the board. More often than not the initial setup of the board is singular and

predetermined, such as for example in tictactoe the board consists of an empty three by three grid,

while in chess the chess-pieces are set up symmetrically on each side of the board, mimicking a

battle about to start. The moves which can be done on the board vary from game to game. Games

like tictactoe and connect four allow moves which introduce board pieces on the board as the game

proceeds while others such as chess and checkers start with a fixed number of pieces which are

moved around the board and removed when captured. The goals of the games differ depending

on the games themselves and whether such goals have been reached or not can be deduced directly

from the board’s configuration during gameplay. For example in tictactoe the goal is to have three

markers representing a player in a row which is immediately visible from the board. In chess

the goal is to immobilise the King piece such that every possible next move causes the piece to

be captured. This too can be deduced from the board. In the next section we will describe how

the above games can be viewed as finite state systems which can be modelled and specified for

verification using model checking.

6.3 Modelling Game Systems

In order to model check a game one must first translate it into a representation which can be ac-

cepted for model checking such as a Kripke structure. Translation of a game into a Kripke structure

is effortless if one views the game as any normal system with its own states and transitions. The

only requirement is to map components of the game to components of the Kripke structure (the

state space S, initial states S0, transition relation R and labelling function L) and provide an ade-

quate set of atomic propositions of the form variable = value related to games such a for example

turn = player1 which means that it is currently player 1’s turn or location 12 = red which means

that location 12 on the board is marked with a red marker.

Before moving on to the state space, we first require a representation of a single state (s ∈ S) of the
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model. As explained earlier a state consists of a set of variables whose values are what is needed

to define the system at any point in time. In the case of games the variables required for such a

state would naturally hold the configuration of the game board (what each of the board locations

contain or the position of the pieces on the board) and the next player to make a move (the player

with the turn). These values are enough because had the game required to be stopped and then

resumed at a later time, they would allow the game to proceed as if the interruption had never

occurred. Hence the combination of game board configuration variables and player turn variable

will form the state of the Kripke structure representing our game. We will from now on refer to

such a state as a game state. Moreover, when we refer to game state variables we imply the variables

of the game state, that is, the game board configuration variables (usually a variable for each board

location where the value of the variable represents the marker or piece currently in or on the board

location) and the player turn variable.

The state space S contains all the possible states of the system, both valid and invalid ones. In terms

of game systems the state space translates to all the possible configurations the game’s board and

the player turn may be in, regardless of the game rules. Hence, some of these combinations of

game board and player turn are valid ones which can be obtained during normal game-play while

others are invalid since they result from invalid moves which go against the game rules. At a more

mathematical level the game state space implies the cross product of the domains of the variables

representing the board locations and the variable representing the player turn.

The initial states of a system, denoted by S0, consist of a set of valid states from which the system

starts to operate. When players decide to play a game, before the first move is done the board game

is set up and the first player is chosen. As mentioned earlier, initial board setup usually consists of

an empty game board (e.g. tictactoe and connect four) or a fixed positioning of the game pieces on

the board as according to the game rules (e.g. checkers and chess). The first player to make a move

on the board is chosen at random or by a simple game rule (such as White always begins with some

games such as chess). We can regard these combinations of the initial board configuration and the

player chosen to start the game, as the set of initial states of our game system, S0. Moreover, this

set of initial game states is a subset of the game state space.

If the model is written correctly the transition relation R of the Kripke structure shows us how

we can move from one valid state to another valid state. Translating this to game systems, we
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require something which takes us from one valid game state to another possible valid game state

in accordance to the game rules. In games such a transition from one game state to another is

known as a player move. If in the current game state a player has their turn, they will decide

which move to make from those which are available to them as according to the game rules. In

this way they alter the board configuration and change the turn to their opponent. In doing so they

take the game to the next game state. We can thus simply say that for a Kripke structure modelling

a game, a player’s move which follows the rules of the game corresponds to a transition defined

in the transition relation of the Kripke structure.

While playing a game the players can deduce the value of the board locations and the player turn

at any one time by viewing the board itself and by knowing who made the last move respectively.

This provides them with a complete overview of the game’s status. Such an action can be viewed

as the labelling function L for our game-oriented Kripke structure, since given a game state such

a function can give a complete description of the game state by providing its respective atomic

propositions.

The systems modelled by Kripke structures lead to infinite computation trees. Each computation

path in such trees can be seen as a game session where starting from the initial board setup the

players take turns to make moves on the board. It is however important to notice that while in

Kripke structures such paths are infinite in length, in reality a game session is finite and eventually

always reaches a point where there are no moves, either because a player has won or because the

game is drawn, making any further moves illegal. We can model a finite game session using an

infinite computation path by writing the transition relation in such a way that certain game states,

when reached, repeat themselves indefinitely. Examples of such states are player winning game

states or draw game states. When such game states occur, the successor game state is the state

itself.

6.4 Specifying Game Systems

The specification of game systems is achieved in the same way as with any normal system, that is

by using temporal logics. Temporal logics allow us to reason about games in the same way as with

any other system. They allow us to verify properties such as whether a game is fair to allow both
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players an equal chance of winning or if there are game sessions (paths) which allow a player to

win in a certain amount of steps such that the opponent loses whatever move he or she makes. It

is our interest to investigate how model checking fairs while trying to verify such properties and

its ability to scale up to larger games.

As some simple examples consider the properties below:

• “All game sessions lead to Player 1 winning”, written in CTL as the formula

Player1AlwaysWin
def= AF winner player1

First of all we must define what winner player1 is. This can be achieved by a formula in

terms of the variables of the board’s locations, written according to the game rules. Using

the AF operator pair we state that for all paths starting at the start state there is eventually

a state on the path where winner player1 is true. For games to be interesting we would like

this property to be false. If this is the case the model checker can provide us with a coun-

terexample by proving the existence of a path where this property fails.

• “Player 1 can force a win in their favour in their third move”, written in CTL as the formula

Player1ForceWin3ndMove
def= EX AX EX AX EX winner player1

The formula winner player1 is defined as previously. Using alternation of the operator pair

EX and AX we can describe game play in such a way that the former signifies a possible

play by Player 1 while the latter means all the possible moves by Player 2 (which are beyond

the control of Player 1). The final result is of the type “does a move exist which whatever move

my opponent does. . . ” or more directly “is there a move which forces . . . ”. This alternation can

be used a number of times to achieve properties which model check games to verify that a

player can or cannot force a win by means of a number of possible moves. The last operator

pair of the sequence EX is required as the finishing move, that is the move which actually

wins the game session.

• “The game board configurations where Player 1 can force a win”, written in µ-calculus as the for-

mula

Player1ForceWin
def= µZ.EX winner player1 ∨ EX AX Z

The subformula winner player1 is defined as previously and represents the set of states

where it is true. The subformula EX winner player1 ∨ EX AX Z enables us to recursively
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Figure 6.1: Board for Tictac

define Player 1 forcing a win in n moves, depending on how many times Z is nested. When

Z is nested zero times Player1ForceWin refers to all the game states where Player 1 wins the

game session in one move. When Z is nested once Player1ForceWin represents the set of

states where either Player 1 can force a win or a move exists he/she can make where Player

2’s moves are useless as they result in Player 1 winning (Player 1 forces the game session to

end in his/her favour in two moves or less). If nested twice then Player 1 can force a win

using three certain moves or less, and so on. The set obtained by the least fixpoint of such a

formula is the set of states from which Player 1 can force a win.

6.5 A very simple game: Tictac

We will now describe a very simple game which we will use as a case in point to show how

modelling can be achieved. Moreover we will specify some properties which can be written for

such a game. The game is very trivial and provides no challenge for the players. However it allows

us to show how a game may be modelled without going into details which are due to the game

itself. We can thus focus on the translation of the game into a model (Kripke Structure).

Our game will be a slight variation of tictactoe which we will call tictac. The board consists of a

grid of two by two which starts out as empty as shown in Figure 6.1. Similarly to tictactoe, two

players alternately position their respective markers (such as for example, cross and circle) on the

board until a line of two is achieved either horizontally, vertically or diagonally.

It can also be immediately deduced that the player who makes the first move wins the game as no

matter what move his opponent does he/she still has two board locations to do the finishing move.

Moreover, we realise that by the third move (first player’s second move) the game ends with three

pieces on the board. Finally it is impossible for the game to be drawn. Using temporal logic it is

possible to verify that such properties are in fact true as we shall see in this section. An example
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Figure 6.2: A complete game of Tictac. Circle Player wins horizontally.

complete game is shown in Figure 6.2. Here circle makes the first move and wins the game.

6.5.1 Modelling Tictac

Our game of tictac will be modelled as a Kripke structure Mtt = S, S0, R, L where S, S0, R

and L have their usual meanings as described in Chapter 3. To describe the state of our sys-

tem at any point in time we will use five variables: board1, board2, board3, board4 and turn.

The variables board1 to board4 represent the board locations and range over the domain Db =

{empty, player1, player2} since each board location can be either empty, marked by Player 1’s

marker or marked by Player 2’s marker respectively. The variable turn represents the turn and

ranges over the domain Dt = {player1, player2} for when it is Player 1’s or Player 2’s turn respec-

tively. Hence the definition of Mtt is as follows:

– S = Db ×Db ×Db ×Db ×Dt.

As can be noted, even for such a simple system the state space is quite substantial. There are

in fact 3× 3× 3× 3× 2 = 162 possible states in the state space. Of these not all are valid. For

example, some states involve four markers on the board while others have three markers of

the same colour on the board. Such states can never be reached if the system is well modelled

according to game rules.

– S0 = {(empty, empty, empty, empty, player1)}.

This is the initial board state possible if we start with an empty board. As can be deduced we

will assume that Player 1 always makes the first move.

– R = {((empty, empty, empty, empty, player1), (empty, empty, empty, player1, player2)),

((empty, empty, empty, empty, player1), (empty, empty, player1, empty, player2)),

((empty, empty, empty, empty, player1), (empty, player1, empty, empty, player2)),

((empty, empty, empty, empty, player1), (player1, empty, empty, empty, player2)),
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((empty, empty, empty, player1, player2), (empty, empty, player2, player1, player1)),

((empty, empty, empty, player1, player2), (empty, player2, empty, player1, player1)),

. . .

((player1, player2, player1, empty, player2), (player1, player2, player1, empty, player2))}

The transitions of R take the game state through valid transitions that lead to states which

are correct according to the game rules. The first transition shown in the above set shows

an example initial move by Player 1 where he/she picks the fourth board location. The last

transition shown on the other hand is one where Player 1 has won the game. When this

occurs the board location variables and turn variable retain their value indefinitely as the

game session has ended and further moves are invalid.

– L((empty, empty, empty, empty, player1)) = {board1 = empty, board2 = empty, board3 =

empty, board4 = empty, turn = player1},

L((empty, empty, empty, empty, player2)) = {board1 = empty, board2 = empty, board3 =

empty, board4 = empty, turn = player2},

L((empty, empty, empty, player1, player2)) = {board1 = empty, board2 = empty, board3 =

empty, board4 = player1, turn = player2},

L((empty, empty, player1, empty, player2)) = {board1 = empty, board2 = empty, board3 =

player1, board4 = empty, turn = player2},

. . .

The labelling function L is defined in such a way that it labels each state with the atomic

propositions true in that state. The first case for example labels the state with the atomic

propositions which thus show that this state is an initial state as it fits the definition of S0.

The computation paths available for our small game are many. If we consider just the paths which

start with Player 1 making the first move, there are four paths at first, which quickly branch out into

twelve possible paths, each of which representing a possible game session given the two moves

made by the players. The computation tree we are discussing can be viewed in Figure 6.3. Player

1 has the circle marker while Player 2 has the cross marker. If one examines the paths of Figure

6.3, especially the first four moves, on first glance one concludes that there are in fact four initial

empty locations and hence four moves. However by symmetry we realise that in reality there is

only one actual move and that the four possible ones are variations of this one move as shown in
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Figure 6.3: Initial Part of Computation Tree in a game of Tictac where Player 1 (Circle) makes the
first move

Figure 6.4: Assumed and Actual Possible First Moves of Player 1 (Circle) in Tictac

Figure 6.4. Hence, due to such symmetry it is possible to reduce the Kripke structure modelling

the game system to a fraction of its initial size. Note that this does not reduce the state space,

but merely decreases the valid states rendering the model more compact. Note however that it is

possible with suitable encodings to somewhat reduce the state space, which is often important to

reduce the problems of state explosion. The minimised Kripke structure is shown in Figure 6.5.

6.5.2 Specifying Tictac

We will now specify some properties which we can use as examples to model check our model. We

will use circle to represent Player 1 and cross to represent Player 2. Again we assume that Player 1

always makes the first move.

Some properties:

• “Player 1 always wins” written in CTL as the formula

Player1AlwaysWins
def= AF winner circle
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Figure 6.5: A Minimised Kripke Structure for Tictac. Some of the states shown represent more
than one state which may be left out due to symmetry as shown with the example state on the
right hand side of the figure. Player 1 uses the circle marker while Player 2 uses the cross marker.

where

winner circle
def=

((board1 = circle) ∧ (board2 = circle)) ∨ ((board3 = circle) ∧ (board4 = circle)) ∨

((board1 = circle) ∧ (board3 = circle)) ∨ ((board2 = circle) ∧ (board4 = circle)) ∨

((board1 = circle) ∧ (board4 = circle)) ∨ ((board2 = circle) ∧ (board3 = circle))

This definition represents the condition required for Player 1 to win a game session. Said

definition, when proceeded by the operator pair AF, results in a formula which means that

always eventually Player 1 wins. If this formula is verified to be true, Player 1 will therefore

finally win the game at all times. If this is false it is possible for Player 2 to win.

• “Player 1 can force a win with the second move” written in CTL as the formula

Player1ForceWinSecondMove
def= EX AX EX winner circle

We define winner circle as previously. The formula EX AX EX winner circle states that there

exists a move by the circle player which whatever moves the cross player does leads to a an-

other (possible) move by the circle player which causes the latter to win the game (i.e. circle

player can force a win in two moves). Proving that this is true ensures that we check that

Player 1 can win in two moves. If this is false no move Player 1 can make forces Player 2 to

lose in two moves.
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• “There are game sessions which result in a full board (all locations are used)” written in CTL as the

formula

GameEndsFullBoardExists
def= EF board full

where

board full
def=

(¬(board1 = empty) ∧ ¬(board2 = empty) ∧

¬(board3 = empty) ∧ ¬(board4 = empty))

This definition represents the condition required for the board to be full. The formula EF

board full means that there exists a path where eventually on this path all the board loca-

tions are marked by the players. If model checking this formula leads to a positive result

it is possible for the model to reach such a game state, which according to our rules is not

possible. If the result is negative then our model is correct and there are no game sessions

which lead to a full board.

• “There are no games which end with a draw” written in CTL as the formula

GameEndsDrawGameNotPossible
def= AF ¬draw game

where

draw game
def= (¬winner cross) ∧ (¬winner circle) ∧ board full

This definition derives its value in terms of the previous definitions of winner circle, board full

and a new definition winner cross which is the equivalent form of winner circle for the cross

player. The meaning of this formula is that a draw game board is one where neither of the

two players win and the board is full. We use the temporal operator pair AF with the nega-

tion of draw game which gives us a formula which means that in all paths starting from

the start state it is eventually true that the game is not drawn. Checking this statement and

finding it to be false means that it is possible to draw the game.

6.5.3 Verifying Tictac

To verify a game such as tictac we first translate its Kripke structure model into the equivalent

code which a model checker can use. Model checkers, such as SMV or Mucke, use such code to

internally build the required Kripke structure (or OBDD representation in the case of symbolic

model checking). Specification is then done, also using the model checker’s constructs to write the
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required formulas in the temporal logic language accepted by the model checker. Finally verifica-

tion is done automatically by the model checker and if any specification about the game is false it

provides a counterexample when this is possible. Using such a procedure it is possible to verify

tictac and any similar board game.

6.6 Conclusion

As we have seen in this chapter, model checking can be used to reason and automatically prove

various properties about various board games. Moreover using counterexamples and witnesses

it is sometimes possible to automatically generate game sessions which show why the specified

properties failed or why they are true. In the next chapters we will show how model checking

fairs with games such as tictactoe and connect four. These games have a larger state space than

tictac even when the board size used is the smallest possible. By scaling up the board sizes and

attempting to proving various properties about such games we can see whether model checking

is efficient when applied to games and proving properties about game systems. This is important

because it is often the case that in such systems the state space grows quickly with every state vari-

able introduced. We are interested in knowing whether enumerative model checking, or symbolic

model checking for that matter, is able to cater for such systems in an adequate manner.



CHAPTER 7

CASE STUDY 1: TICTACTOE

Man is a game-playing animal,

and a computer is another way to play games.

Scott Adams

7.1 Overview

This chapter aims at using the tictactoe game as a case study for the model checking of game

systems. We will first introduce the game and its rules. Following this we show how the game can

be modelled by means of a Kripke structure and specified by means of various properties using

CTL and µ-calculus temporal logics. As a means of verification we employ SMV and µcke as our

model checkers for CTL -based and µ-calculus -based specifications respectively. Moreover we

show how, by repeating the above exercise for tictactoe boards of different sizes, we can attempt

to test model checking’s ability to scale up to larger game systems.

7.2 Game Rules

Tictactoe is a two-player game with players usually designated as cross and circle. Any other

variation of the two may be used, such as cross and naught, and black and white. The game board

typically consists of a matrix of 3×3 locations (as shown in Figure 7.1) but which can be generalised

for n× n locations. A valid tictactoe game follows the rules below:
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Figure 7.1: A standard 3× 3 tictactoe board

Figure 7.2: Example moves in a 3× 3 tictactoe board

1. The two players take turns to fill locations on the board.

2. In each turn a player takes up one of the locations and marks it with his own symbol (a cross

or a circle respectively depending on the marker chosen).

3. Once a location is used up it cannot be used again in a subsequent turn.

Figure 7.2 shows some example moves of a typical tictactoe game.

The main aim for the players in the game is to be the first player to produce a row of n of their

own symbols either horizontally, vertically or diagonally. To do so, the players must make strate-

gic moves that put themselves at an advantage over their opponent and increase their chance of

winning. Two examples of finished games are shown for an 3 × 3 board in Figure 7.3. In the first

example circle wins diagonally, while in the second scenario cross wins vertically.

Figure 7.3: Example winning boards in a 3× 3 tictactoe board
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Figure 7.4: Example draw boards in a 3× 3 tictactoe board

Apart from any of the two players winning, this game can also end in a draw game where the

board locations are all used up but no one has achieved the winning condition of n markers in a

row. Two examples of such cases are shown for a 3× 3 board in Figure 7.4.

7.3 Modelling Tictactoe

In this section we will see how tictactoe may be modelled in terms of a Kripke structure and we

will examine its respective computation tree.

7.3.1 Game State

Before moving on to the Kripke structure used to model tictactoe we first show how the state of the

structure can be represented by the use of appropriate variables. In our discussion we will assume

a tictactoe grid of size 3×3. Note however that our model can be easily generalised for n×n board

locations.

In order to represent a state s for our model of a 3×3 tictactoe game we require two items: a number

of board variables (3 × 3 = 9), each representing a board location and a variable to represent the

current player turn. The values of such variables dictate the state of the model at any point in time.

As stated earlier each of these states represent the game board and turn during a gaming session.

More formally a state can be described as a duple

s = (locs, turn)

where,

– locs is the set of nine board location variables. We denote each of these variables by locsi,



7.3 Modelling Tictactoe 83

Figure 7.5: The positioning of locs variables in a 3× 3 tictactoe board

Figure 7.6: This is the board state represented by the formula (locs1 = empty)∧ (locs2 = player1)∧
(locs3 = player2) ∧ (locs4 = player1) ∧ (locs5 = player2) ∧ (locs6 = empty) ∧ (locs7 = empty) ∧
(locs8 = player1) ∧ (locs9 = empty). Player 1 is represented by the cross symbol while player 2 is
represented by the circle symbol.

where i ranges from 1 to 9 (n2 for a generic tictactoe). The type of each of these variables

can take one of three values: one representing an empty board location (empty), one repre-

senting a board location marked by Player 1 (player1) and one representing a board location

marked by Player 2 (player2). Hence each of these variables ranges over the domain defined

by Db = {empty, player1, player2}. It is important to notice for later on that i also represents

where on the board the location may be found. Location 1 or locs1 is at the upper left corner

of the board while the last board location or locs9 is at the lower right corner of the board.

Figure 7.5 shows as a 3×3 tictactoe board and how locs1 to locs9 are positioned on the board.

Thus to represent the board’s state in the current state all that we require is a valuation of

the set of variables locs from which we extract the equivalent formula, e.g. a possible tictac-

toe board state is the valuation 〈locs1 ← empty, locs2 ← player1, locs3 ← player2, locs4 ←

player1, locs5 ← player2, locs6 ← empty, locs7 ← empty, locs8 ← player1, locs9 ← empty〉

from which we derive the formula (locs1 = empty) ∧ (locs2 = player1) ∧ (locs3 = player2) ∧

(locs4 = player1) ∧ (locs5 = player2) ∧ (locs6 = empty) ∧ (locs7 = empty) ∧ (locs8 =

player1) ∧ (locs9 = empty). This is equivalent to the board state shown in Figure 7.6 where

Player 1 is represented by the cross symbol and Player 2 is represented by the circle symbol.

– turn is the variable which represents the current game state’s turn, i.e. whose turn it is to
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make a move on the board. The type of turn is like that for locs, however we remove the

value empty, resulting in the domain defined as Dt = {player1, player2}. For example if

in the current game state turn = player1, it is player 1’s turn. Note that we assume that

the player selects where they will mark the board in the current board state, but the actual

change in the board locations, i.e. locs, is reflected in the next board state after the current

one.

Hence an example of a possible game state is

(locs1 = empty) ∧ (locs2 = player1) ∧ (locs3 = player2) ∧

(locs4 = player1) ∧ (locs5 = player2) ∧ (locs6 = empty) ∧

(locs7 = empty) ∧ (locs8 = player1) ∧ (locs9 = empty) ∧

(turn = player2).

7.3.2 Game Model

Having defined how a state of the Kripke structure can be represented we move on to the structure

itself. As we have seen in Chapter 6 a board game such as a 3× 3 tictactoe can be seen as a system

and hence modelled as a Kripke structure. To achieve this we once more require a state space S, a

set of initial (valid) states S0, a transition relation R and a labelling function L which together form

the required Kripke structure

Gttt = (S, S0, R, L)

where,

– S = D9
b ×Dt.

Note that the power of 9 indicates the product of Db nine times. This can of course be

generalised to n2 times for an n × n tictactoe. The state space of a 3 × 3 tictactoe contains

39 × 2 = 39366 states. Not all of these states are valid as they do not follow the game’s rules.

For example some states exist where the number of cross and circle markers differ by more

than one. These states are illegal an can never be reached by the correct transition relation

by starting from the initial board configurations. Other examples are the board states where

all the board is filled with crosses or filled with circles. See Figure 7.7 for some invalid game

states.
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Figure 7.7: Some illegal board configurations in a 3× 3 tictactoe board

– S0 = {(empty, empty, empty, empty, empty, empty, empty, empty, empty, player1)}.

This is the initial board state which represents the game starting with an empty board. We

assume that Player 1 always makes the first move. Whether Player 1 or Player 2 makes the

first move is inconsequential for us as we shall see later on.

– R = {((empty, empty, empty, empty, empty, empty, empty, empty, empty, player1),

(player1, empty, empty, empty, empty, empty, empty, empty, empty, player2))

((empty, empty, empty, empty, empty, empty, empty, empty, empty, player1),

(empty, player1, empty, empty, empty, empty, empty, empty, empty, player2))

((empty, empty, empty, empty, empty, empty, empty, empty, empty, player1),

(empty, empty, player1, empty, empty, empty, empty, empty, empty, player2))

((empty, empty, empty, empty, empty, empty, empty, empty, empty, player1),

(empty, empty, empty, player1, empty, empty, empty, empty, empty, player2))

. . .

((player1, player1, player1, player2, player2, empty, empty, empty, empty, player2),

(player1, player1, player1, player2, player2, empty, empty, empty, empty, player2))}

The above shown transitions of R take the game state from a valid state to another valid

state as according to the game rules. The first transition shown in the above set shows Player

1 picking the first board location, locs1. The last transition shown depicts a state where its

successor is the same state itself. This occurs upon reaching an end-game condition such as

a win by either of the players or a draw game. In our case Player 1 has won. The state does

not change because further changes in the board locations lead to illegal states outside of the

game’s rules.

– L((empty, empty, empty, empty, empty, empty, empty, empty, empty, player1)) =

{locs1 = empty, locs2 = empty, locs3 = empty, locs4 = empty, locs5 = empty,
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locs6 = empty, locs7 = empty, locs8 = empty, locs9 = empty, turn = player1},

L((player1, empty, empty, empty, empty, empty, empty, empty, empty, player2)) =

{locs1 = player1, locs2 = empty, locs3 = empty, locs4 = empty, locs5 = empty,

locs6 = empty, locs7 = empty, locs8 = empty, locs9 = empty, turn = player2},

. . .

The labelling function is defined as usually. It labels each state with the atomic propositions

true in that state. This allows us to distinguish each of the different states of the state space

through their label.

7.3.3 End-Game Definitions

Apart from the model we also require some definitions which we have already mentioned briefly

before when we discussed repeating states. These definitions can be used to detect whether: the

board is full, Player 1 has won, Player 2 has won, the game is a draw or the game has ended. All

of these are defined in terms of the board location variables and are given respectively below:

board full
def=

∧9
i = 1(locsi 6= empty)

winner player1 def=

[(locs1 = player1) ∧ (locs5 = player1) ∧ (locs9 = player1)] ∨

[(locs3 = player1) ∧ (locs5 = player1) ∧ (locs7 = player1)] ∨

(
∨

i = 1, 4, 7[(locsi = player1) ∧ (locsi+1 = player1) ∧ (locsi+2 = player1)]) ∨

(
∨

i = 1, 2, 3[(locsi = player1) ∧ (locsi+3 = player1) ∧ (locsi+6 = player1)])

winner player2 def=

[(locs1 = player2) ∧ (locs5 = player2) ∧ (locs9 = player2)] ∨

[(locs3 = player2) ∧ (locs5 = player2) ∧ (locs7 = player2)] ∨

(
∨

i = 1, 4, 7[(locsi = player2) ∧ (locsi+1 = player2) ∧ (locsi+2 = player2)]) ∨

(
∨

i = 1, 2, 3[(locsi = player2) ∧ (locsi+3 = player2) ∧ (locsi+6 = player2)])

draw game
def= (¬winner player1) ∧ (¬winner player2) ∧ draw game

end game
def= winner player1 ∨ winner player2 ∨ board full
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Figure 7.8: Initial part of computation tree of a 3× 3 tictactoe board with two initial states, one for
each of the players. The left computation tree shows the paths possible if game play starts with the
cross marker, similarly on the right for the circle marker. As can be seen by inspection the trees are
symmetrical.

7.3.4 Game Computation Tree

The finite Kripke structure model generates an infinite computation tree as with all systems mod-

elled using such structures. Had we used two initial game states which differ in whom of the

players makes the first turn the computation tree would be separated into two independent sym-

metrical sub-trees as shown in Figure 7.8.

Initially the two computation subtrees rooted at the initial game states start out with just one com-

putation path each. From these states the computation paths quickly branch out in nine possible

different computation paths each. There are nine computation paths because of the nine possi-

ble initial moves a player can make when presented with an empty board. Each of these nine

branches further subdivide into eight possible paths and so on in a factorial fashion. This is due

to the fact that after every move the choice of board locations available for marking diminishes.

This of course occurs until an end-of-game state is reached in the Kripke structure modelling our

game. Since the structure is defined in such a way that such states repeat themselves indefinitely

and since all game sessions eventually must end due to the finite size of the board or due to a

winning or draw condition, the paths of the computation tree eventually all should lead to infi-

nite paths which no longer branch but where the states on the path are all repetition of the same

state in the Kripke structure. The result of this is that both computation trees branch out quickly

at first. This branching then slowly decreases until the tree fans out completely and branching no
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longer occurs (after the board has filled out) or until an end-of-game state is reached which causes

the branching to stop abruptly (before the board has filled out). Once this occurs the branches

continue indefinitely, repeating the same game state.

Another important point to notice from tictactoe’s computation tree if two start states were used is

that due to the inherent symmetry and due to the fact that there are two separate sub-trees we can

assume that Player 1 will make the first move thus reducing our model to half its size. Modelling

the game in this way as opposed to choosing who makes the first move non-deterministically

has no negative affect in our case, especially in terms of what specifications may be verified on the

model. Both the model and specifications can easily be rewritten to swap the players thus allowing

the other half of the computation tree to be verified separately.

7.3.5 Game Strategy

As with all board games, various game strategies exist for tictactoe which allow the players a better

chance of winning. In our case we are not interested in any particular strategy. Our aim is to prove

properties about the game itself and not on the game play restricted to a number of particular

moves. Hence during game play each of the board locations which has not been previously used

has an equal chance of being selected as if the player were playing at random. To achieve this we

make use of non-determinism. Hence the model checker when verifying our model attempts all

possible combinations of the moves.

7.3.6 SMV Model

If one assesses the game board one realises that there is a lot of symmetry such as along the y-axis,

along the x-axis, along the diagonals and rotationally. For a 3× 3 tictactoe board one can view the

board as consisting of three types of locations situated at differing areas of the board. For example,

locations 1, 3, 7 and 9 all lie in the corners of the board and can be grouped as corners. Locations 2,

4, 6 and 8 all lie on the sides of the board. Finally location 5 is unique as it lies at the centre of the

board. Figure 7.9 shows the mapping of the nine board locations to this new view of the board. We

attempted to use such a view so as to potentially create a more compact model. However it does

not scale up easily for larger board sizes since a different model is required for every n×n tictactoe
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Figure 7.9: Symmetrical view of a 3× 3 tictactoe board

board size. Moreover, the model created is harder to understand and does not provide advantages

in terms of state space reduction. We therefore decided to create the SMV models which use the

traditional indexed approach, i.e. each board location is seen as unique. Every state of the model

includes as input an index variable which determines which location a player has chosen in the

current state and which determines the location to be changed from empty to the player’s marker

in the next state. These kinds of models are easy to understand, are compact in both model code

and state space size and can easily scale up for larger board sizes as required.

7.3.7 µcke Model

The tictactoe model written in µcke’s syntax language is identical to the one for SMV, that is,

although the models differ in how they are expressed, the initial states and transitions defined are

identical. The only difference is minimal and related to the fact that for the tictactoe models written

for µcke we were able to abstract away the index variable used as input for tictactoe models written

for SMV. This allows for a slightly smaller model but the end-result in the model achieved is the

same.

7.4 Specifying Tictactoe

This section will introduce the properties which we utilised to specify tictactoe. These properties

are not exhaustive and many more may be added as required. We have selected ten properties

each for CTL and µ-calculus and used these as our specification.
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7.4.1 CTL Properties

In the CTL properties described here we will assume a 3× 3 tictactoe board size. For larger board

sizes such as 4×4, 5×5 and so on, these properties have been altered slightly as required to enable

the properties to scale up with the larger models.

1. AFEndGame
def= AF end game

This property is a very trivial one we would like to specify about our game. However it is impor-

tant as it model checks the game to verify whether all the paths of the game eventually lead to a state

where the end game condition is satisfied, that is whether all paths lead to either of the two players

winning or a draw game. In doing so we prove that our game model does not enter any computa-

tion path that leads it to an infinite and hence incorrect game which never stops. It is true that all

computation paths are infinite when modelled over Kripke structures. However we are assuring

that for all computation paths, the initial prefix is finite and that such a prefix ends at a state where

the end of game condition is satisfied. After such a state is reached it is inconsequential for us that

the rest of the path is infinite, as long as the end of game state is reached in a finite number of

steps. It would be interesting in LTL or µ-calculus to specify a properties similar to this one such

as AFG end game and AGF end game. In doing so we specify that once end game is reached it

repeats indefinitely, and that all states eventually lead to an end of game state, respectively. CTL

can express two similar expressions defined as follows

AGAFEndGame
def= AG AF end game and

AFAGEndGame
def= AF AG end game.

The first formula means that all game states of all the paths lead to game states where end game is

eventually satisfied along all paths originating from said game states. The second one states that

in all paths eventually a game state is reached where all game states on all paths originating from

such a game state satisfy end game. Both these latter formulas should be true for our model of

tictactoe.

2. AFPlayer1Wins
def= AF winner player1

This property is also trivial. It model checks the game to see if all the computation paths lead Player 1

to win the game hence checking whether the game is totally biased towards such a player. Similar

alterations to the property written for end game may be done, which result in

AGAFPlayer1Wins
def= AG AF winner player1 and
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AFAGPlayer1Wins
def= AF AG winner player1.

These are exactly the same but are aimed at checking whether winner player1 is true, instead of

end game. Note that these properties are false for tictactoe and that model checking should result

in an error trace which shows a set of game states which lead to Player 2 winning or a draw game.

3. Player1StartsP layer1AFWins
def= (turn = player1)⇒ AF winner player1

This property is similar to the previous one albeit more interesting. We ask whether if Player 1

makes the first move, he/she will always finally win the game, that is whether in fact Player 1 can win

just because he is the first player to make a move. This property should be false for tictactoe and

the model checker should provide a counterexample which shows how if Player 1 starts playing

Player 2 can win or a the game can result in a draw. Notice also that since we modelled the game

with Player 1 always making the first move, this specification is the same as the previous one,

that is the (turn = player1) subformula is extra. However in reality the meaning of this and the

previous formulas differ by the fact that one asks if Player 1 can eventually win for all paths if

he/she makes the first move while the other asks whether Player 1 can eventually finally win for

all paths with no restriction, respectively.

4. Player1StartsCentreP layer1AFWins
def=

((turn = player1) ∧ (index = 5))⇒ AF winner player1

In this property we attempt to dispel a tictactoe myth which many people think is true, that is that

if Player 1 is the first player to make a move and that move is in the centre of the board (Location 5) he/she

will always eventually win the game. We use model checking to see if this myth is true or not. As we

mentioned earlier, we have modelled the game to pick randomly between the different locations

at each game state. One of the initial randomly selected game states is the middle location. By

the use of the subformula ((turn = player1) ∧ (index = 5)) we verify that there exists an initial

move by Player 1 where said player picks the centre location to make their first move. If this is

the case, the model checker uses it to try to see if eventually finally all the game sessions end

up satisfying winner player1. If it is false a counterexample trace will be provided for us which

shows Player 2 winning or a draw game. A better way to model check this property is to modify

slightly the model to make the first move by Player 1 pick the centre location always (hence making

((turn = player1)∧ (index = 5)) true for the only initial state possible) and then random locations

are chosen thereof (as before the modification). Note that we can modify this property to check
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various similar tictactoe attributes, such as:

• We can check this for all the board locations. That is whether there are other locations which

guarantee a win if used in the first move. This is achieved by changing the index value to

any of the nine board locations. If on the other hand we want to prove the above for different

index locations together such as for example all the corners or the sides are chosen in the

beginning we must modify the model to force pick non-deterministically between them and

so try them all out. We then specify the indices by the disjunction of their respective atomic

propositions, such as for example all the sides ((index = 2)|(index = 4)|(index = 6)|(index =

8)).

• We can check whether the opposite is true. That is whether there are locations which guaran-

tee a failure (player 2 wins) for the first player to make a move. This is achieved by changing

the subformula winner player1 to winner player2.

• We can check whether there are locations which if chosen by the first player to make a move

always result in a draw game, achieved simply by changing winner player1 to the draw

game end-game definition draw game.

5. Player1StartsCentreP layer2EFWin
def=

((turn = player1) ∧ (index = 5))⇒ EF winner player2

This property is provided as a complement to the previous one. We check if there are game sessions

which allow Player 2 to win if Player 1 starts in the centre location of the board. If the above property is

false then this one should be obviously true. We can alter the model as before by making the first

player pick the centre location if required. The alterations done to the previous property can be

done to this property as well, that is:

• We can check this for all indices or combinations of such indices. Altering the model as

highlighted above is required if we need to check the disjunction of more than one index

atomic proposition.

• We can alter winner player2 to winner player1 to check whether in fact starting at a given

index results in their being a possibility of that player winning the game.
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• We can check whether if a player starts with a certain location, there exists a possibility of a

draw game.

6. Player1ForceWin3Moves
def= EX AX EX AX EX winner player1

This property checks whether Player 1 can force a win in three moves by making a certain combination

of moves. To do so we use a sequence of EX AX where EX stands for a possible move by Player 1

while AX stands for all the moves Player 2 can make, that is EX AX on its own means can a move be

done (by Player 1 in our case) which whatever move there is after (by Player 2) leads to . . . . This property

can be of course written for any number of moves by repeating the EX AX sequence per every

two moves by the players. We are obviously limited by the size of the tictactoe board which for a

3× 3 board, enables at most four sequences of EX AX. As stated earlier the last operator pair EX is

required as the finishing move done by Player 1 to actually win the game. As we shall see later on,

µ-calculus is more flexible as it allows us to write this property while generalising for n sequences

of EX AX. This property should be always false since Player 2 can always force a draw.

7. Player1StartsCentreForceWin3Moves
def=

(((turn = player1) ∧ (index = 5))⇒ EX AX EX AX EX winner player1)

In this property we combine Properties 4 and 6 to create the property which states can Player 1 force

a win in three moves if he/she starts play with a move at the centre location? This property can be altered

in may ways to create similar properties:

• We can alter the number of moves required to force a win.

• We can alter the locations where the first move is made such as for example all the corners

(indices 1, 3, 7, 9) or all the sides (indices 2, 4, 6, 8). Again the model has to be altered

accordingly to allow more than one index to be model checked at a time.

8. Player1StartCentreP layer2ReplyCornerForceWin3Moves
def=

(((turn = player1) ∧ (index = 5))∧

AX ((turn = player2) ∧ ((index = 1) ∨ (index = 3) ∨ (index = 7) ∨ (index = 9))))⇒

EX AX EX AX EX winner player1

This property asks whether if Player 1 starts play in the centre location, and Player 2 replies in one of

the corners, can Player 1 force win the game in three moves? To verify this property we must alter the
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model so that instead of randomly selecting the first and second moves, in the first move Player 1

selects the centre location while in the second move Player 2 selects one of the corner locations of

the board. In this way we ensure that the subformulas ((turn = player1) ∧ (index = 5)) and AX

((turn = player2) ∧ ((index = 1) ∨ (index = 3) ∨ (index = 7) ∨ (index = 9))) are true for Player 1

and Player 2 respectively. The rest of the locations are then selected at random hence making the

model checker check all the possible paths. Using such alterations we then ask the model checker

whether it is possible for it to find game sessions which allow Player 1 to force win the game after

3 moves. Again like in the previous property we can change the property so as:

• We can change Player 1’s initial move to one or more different indices, provided we also alter

the model accordingly.

• We can change Player 2’s reply move to one or more different indices, provided we also alter

the model accordingly.

• We can also alter the number of moves required to force a game into a win for Player 1.

9. Player1AFWinBoardConfiguration
def=

AG (board configuration1 ⇒ AF winner player1)

where board configuration1
def=

(locs1 = player1) ∧ (locs2 = player1) ∧ (locs3 = empty)∧

(locs4 = player1) ∧ (locs5 = player2) ∧ (locs6 = player2)∧

(locs7 = empty) ∧ (locs8 = player2) ∧ (locs9 = empty)

defines a particular game board configuration which we believe is a forced win for Player 1. This

temporal logic formula describes a property which verifies the system to see whether it is true that

if a certain board configuration occurs during gameplay (in our case the game board configuration (player1,

player1, empty, player1, player2, player2, empty, player2, empty) it is the case that Player 1 always

eventually wins. If this property is true and while playing this board configuration is reached, then

no matter what Player 2 does, he/she has already lost. We can alter this property in various ways:

• Check whether it is possible for Player 2 to win by substituting, AF winner player1 with EF

winner player2.

• Check whether it is possible for game play to result in a draw by substituting, AF winner player1

with EF draw game.
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10. Player1ForceWin2MovesBoardConfiguration
def=

AG (board configuration1 ⇒ EX AX EX winner player1)

where board configuration1 is defined as in the previous property. This property states that it is

true that if a certain board configuration occurs during gameplay (in our case the game board configuration

(player1, player1, empty, player1, player2, player2, empty, player2, empty)) it is the case that Player

1 can force win the game in two moves. This implies that this board state is a winning one for Player

1 and that no matter what Player 2 does, he/she has already lost the game proving future moves

useless. This property is thus quite similar to the previous one. However this property checks to

see if the winning condition for Player 1 can occur after 2 moves while in the previous property we

do not impose such a restriction. This property may be modified in a similar way to the previous

property. We can also modify it by changing the moves required to force a win.

7.4.2 µ-calculus Properties

For the µ-calculus properties we will assume as above and we shall alter the properties as required

for different board sizes. Some of the properties here are translations of CTL properties into µ-

calculus while others cannot be expressed by the former language and are unique for µ-calculus.

1. AFEndGame

def= AF end game (CTL )
def= µZ.(end game ∨AX Z) (µ-calculus )

This property is synonymous to the first CTL property expressed earlier but has been translated to

the fixpoint representation of µ-calculus . As before it checks whether all games always finally lead to

an end of game state, that is, whether Player 1 wins, Player 2 wins or the game results in a draw. Since the

above µ-calculus formula on its own represents only the set of states where such formula is true,

we need to write another formula to make sure that our model satisfies the above property, that is,

we need to specify whether all the start states imply the property. This can be expressed using the

formula:

∀s. (start game(s)⇒ AFEndGame(s))

where s is of type Game State and

start game
def=

((turn = player1) ∧
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(locs1 = empty ∧ locs2 = empty ∧ locs3 = empty ∧

locs4 = empty ∧ locs5 = empty ∧ locs6 = empty ∧

locs7 = empty ∧ locs8 = empty ∧ locs9 = empty))

The formula start game represents the set of initial states (in our case just one state with an empty

board and Player 1’s turn). If this property is verified to be true then it is true that for our game,

the game always finally ends.

2. AFPlayer1Wins

def= AF winner player1 (CTL )
def= µZ.(winner player1 ∨AX Z) (µ-calculus )

Again, this property is similar to the one written earlier in CTL and quite similar to the above µ-

calculus property. This is a basic property one would like to prove about a game, that is, whether

Player 1 always eventually wins the game. We are required to add another formula such that the

model checker proves the above property:

∀s. (start game(s)⇒ AFPlayer1Wins(s))

where s and start game have the same type and definition as before, respectively. Using this

property we can check whether a game is completely biased towards a player and whether the

opposing player has a chance to win even if the game is unfair.

3. AGIfP layer1StartsMiddleImpliesAFPlayer1Wins

def= AG (Player1StartsMiddle⇒ AF winner player1) (CTL )
def= νZ.(Player1StartsMiddleImpliesAFPlayer1Wins ∧AX Z) (µ-calculus ) where

Player1StartsMiddleImpliesAFPlayer1Wins
def=

Player1StartsMiddle⇒ AFPlayer1Wins

and where

Player1StartsMiddle
def=

((turn = player2) ∧

(locs1 = empty ∧ locs2 = empty ∧ locs3 = empty ∧

locs4 = empty ∧ locs5 = player1 ∧ locs6 = empty ∧

locs7 = empty ∧ locs8 = empty ∧ locs9 = empty))

and AFPlayer1Wins is defined as previously.

This formula, split into many sub-formulas, attempts to verify the game to check if it is the case
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that it is always globally true that if Player 1 starts play in the middle location of the tictactoe board they

always finally win the game. If this formula is true, Player 1 can win simply by starting play in

the middle location of the board. As can be deduced, Player1StartsMiddle is the set of states

where Player 1 has selected to start gameplay in the middle location. Subsequently the formula

Player1StartsMiddleImpliesAFPlayer1Wins represents the states where if Player 1 starts in the

middle imply that they will always finally win. We then obtain the states for our system where

this is true for all states in all paths originating from such states by means of the actual property.

Finally we require the following formula:

∀s. (start game(s)⇒

AGIfP layer1StartsMiddleImpliesAFPlayer1Wins(s))

where s and start game have the same type and definition as before, respectively. In this way we

check whether the property is true for our model by checking if it is true for the start state.

4. AGIfP layer1StartsMiddleImpliesEFPlayer2Wins

def= AG (Player1StartsMiddle⇒ EF winner player2) (CTL )
def= νZ.(Player1StartsMiddleImpliesEFPlayer2Wins ∧AX Z) (µ-calculus ) where

Player1StartsMiddleImpliesEFPlayer2Wins
def=

Player1StartsMiddle⇒ EFPlayer2Wins

where

EFPlayer2Wins

def= EF winner player2 (CTL )
def= µZ.(winner player2 ∨ EX Z) (µ-calculus )

and Player1StartsMiddle is defined as before.

This formula asks whether it is always the case that it is possible for Player 2 to win if Player 1 starts play

in the middle location. The subformula EFPlayer2Wins refers to the set of states where starting

from such states paths exist which eventually lead to states where Player 2 wins. Hence, the states

which satisfy the formula Player1StartsMiddleImpliesEFPlayer2Wins are those where if Player

1 starts play in the middle, there exists the possibility that Player 2 wins. The complete formula

checks whether this is true for all the states on all the paths of the model. To model check the

property we write the formula:

∀s. (start game(s)⇒
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AGIfP layer1StartsMiddleImpliesEFPlayer2Wins(s))

where s and start game have the same type and definition as before, respectively.

5. AGIfP layer1StartsMiddleP layer2RepliesCornerImpliesAFPlayer1Wins

def= AG (Player1StartsMiddleAndP layer2RepliesCorner ⇒ AF winner player1) (CTL )
def= νZ.(Player1StartsMiddleAndP layer2RepliesCornerImpliesAFPlayer1Wins

∧ AX Z) (µ-calculus )

where

Player1StartsMiddleAndP layer2RepliesCornerImpliesAFPlayer1Wins
def=

Player1StartsMiddleAndP layer2RepliesCorner ⇒ AFPlayer1Wins

and where

Player1StartsMiddleAndP layer2RepliesCorner
def=

((turn = player1) ∧

((locs1 = player2 ∧ locs2 = empty ∧ locs3 = empty ∧ locs4 = empty ∧ locs5 = player1 ∧

locs6 = empty ∧ locs7 = empty ∧ locs8 = empty ∧ locs9 = empty) ∨

(locs1 = empty ∧ locs2 = empty ∧ locs3 = player2 ∧ locs4 = empty ∧ locs5 = player1 ∧

locs6 = empty ∧ locs7 = empty ∧ locs8 = empty ∧ locs9 = empty) ∨

(locs1 = empty ∧ locs2 = empty ∧ locs3 = empty ∧ locs4 = empty ∧ locs5 = player1 ∧

locs6 = empty ∧ locs7 = player2 ∧ locs8 = empty ∧ locs9 = empty) ∨

(locs1 = empty ∧ locs2 = empty ∧ locs3 = empty ∧ locs4 = empty ∧ locs5 = player1 ∧

locs6 = empty ∧ locs7 = empty ∧ locs8 = empty ∧ locs9 = player2)))

and AFPlayer1Wins is defined as previously.

In this property we take Property 3 a step forward by checking whether it is always the case that

if Player 1 starts in the middle location and Player 2 replies in one of the corner locations, Player 1 always

finally wins. The formula Player1StartsMiddleAndP layer2RepliesCorner represents the set of

states where Player 1 has marked the centre location and Player 2 has marked one of the corner

locations. Using this subformula we build the formula

Player1StartsMiddleAndP layer2RepliesCornerImpliesAFPlayer1Wins which refers to the set

of states where if the former subformula is true this implies that Player 1 is always finally the

winner. This allows us to obtain the required property which checks that in all the states on all the

paths of the system if the players make their moves as described, Player 1 always eventually wins.
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To complete the property and allow us to check it on the model we require the formula:

∀s. (start game(s)⇒

AGIfP layer1StartsMiddleP layer2RepliesCornerImpliesAFPlayer1Wins(s))

where s and start game have the same type and definition as before, respectively.

6. AGIfP layer1StartsMiddleP layer2RepliesCornerImpliesEFPlayer2Wins

def= AG (Player1StartsMiddleAndP layer2RepliesCorner ⇒ EF winner player2) (CTL )
def= νZ.(Player1StartsMiddleAndP layer2RepliesCornerImpliesEFPlayer2Wins

∧ AX Z) (µ-calculus )

where

Player1StartsMiddleAndP layer2RepliesCornerImpliesEFPlayer2Wins
def=

Player1StartsMiddleAndP layer2RepliesCorner ⇒ EFPlayer2Wins

This property checks whether it is always the case that if Player 1 starts in the middle location and

Player 2 replies in one of the corner locations, there exists a path which eventually leads Player 2 to win.

This property complements the previous one. If the previous property is true this property should

be false and viceversa. Player1StartsMiddleAndP layer2RepliesCorner represents the same set

of states as before. Player1StartsMiddleAndP layer2RepliesCornerImpliesEFPlayer2Wins

represents the set of states where if the former subformula is true this implies that Player 2 may

be finally the winner. Our final property proves this for all the states of the game model. We also

require the formula:

∀s. (start game(s)⇒

AGIfP layer1StartsMiddleP layer2RepliesCornerImpliesEFPlayer2Wins(s))

where s and start game have the same type and definition as before, respectively.

7. Player1ForceWin
def=

µZ.(winner player1 ∨ ((turn = player1 ∧ EX Z) ∨ (turn = player2 ∧AX Z)))

This property checks whether Player 1 may force a win in a number of moves starting from a particular

board state. Such a property may only be written in µ-calculus since no equivalent CTL property

exists. In CTL it is only possible to define a fixed number of moves required to force a win while

µ-calculus allows us to leave the upper bound undetermined such that verification may check the

property for any number of moves. The result of such a property is an interesting one for any

form of game as it shows that there exist board states where a player may win no matter what
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their opponent does hence proving future moves useless. If such board states exist, it would be a

player’s main target to achieve them so as to ensure a win in their favour. In order to model check

this property we require the formula:

∃s. P layer1ForceWin(s)

where s is of type Game State.

Using this formula we check for the existence for such states. Moreover, a state count of this

property gives us the number of board states where Player 1 can force a win.

8. Player1CanForceAWinIfStartsMiddle
def= Player1StartsMiddle ∧ Player1ForceWin

where Player1StartsMiddle and Player1ForceWin are defined as before. This µ-calculus –only

property verifies whether it is possible for Player 1 to force a win in a number of moves if they start play

in the middle board location. Doing so we may affirm or dispel a myth which some people believe is

true for tictactoe, that is, if Player 1 starts in the middle location they win at all the costs. We use

the formula:

∃s. P layer1CanForceAWinIfStartsMiddle(s)

where s is of type Game State. In this way we check for the existence of the required states which

satisfy both the two sub-properties.

9. Player1CanForceAWinIfP layer1StartsMiddleAndP layer2RepliesCorner
def=

Player1StartsMiddleAndP layer2RepliesCorner ∧ Player1ForceWin

where Player1StartsMiddleAndP layer2RepliesCorner and Player1ForceWin are defined as pre-

viously. We use this property to show whether if Player 1 starts play in the middle and Player 2 replies

in a corner location, Player 1 can force a win in a number of moves. We use this property to check if it is

true that replying to a move with another allows a player to force a win, as it is often believed. We

can of course try this property using other start/reply locations or to try to see if instead of Player

1, Player 2 can force a win. To check this property we require the formula:

∃s. P layer1CanForceAWinIfP layer1StartsMiddleAndP layer2RepliesCorner(s)

where s is of type Game State. Again, in this way, we check for the existence of the required states

which satisfy the property.

10. Player2MayDraw
def=

µZ.(draw game ∨ ((turn = player1 ∧ EX Z) ∨ (turn = player2 ∧ EX Z)))

This property defines the set of states where Player 2 may attempt to draw the game. We can model
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check the game model using this property by means of the additional formula:

∀s. (start game(s)⇒ Player2MayDraw(s))

where s is of type Game State. This formula states that for all states it is true that if the state is a

starting one it implies that Player 2 may draw the game.

7.5 Verifying Tictactoe

In order to verify the above properties on tictactoe a model generator was created in C# which

generates SMV and µcke code scripts for tictactoe models. This generator is able, given a board

size and two player name parameters, to generate the appropriate x×x tictactoe code script for two

players. It does so by automatically creating the appropriate definitions of the initial game state,

the transition relation and end-game state conditions defined earlier. Using this script, which can

be saved and edited as necessary, we added the specifications above in SMV CTL syntax and µcke

µ-calculus syntax, taking care to modify the properties according to the board size since some of the

above properties are restricted to a tictactoe board size of 3×3. The system used for model checking

consisted of an AMD Athlon 64 3700+ 2.19GHz processor with 2.00 GB of memory, running a 32

bit operating system.

7.5.1 Results

Verifying tictactoe of different sizes using the above specifications has yielded the following results

as shown in the tables in the following pages.
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SMV Results

Verification Property
Result 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze
3 × 3 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
4 × 4 TRUE FALSE FALSE FALSE DNF C DNF C FALSE C
5 × 5 C C C C C C C C C C

Table 7.1: Tictactoe Verification Results for the CTL properties verified using SMV

Verification Property
Time 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze

3 × 3 0.59375 s 1.23438 s 1.25 s 1.03125 s 0.671875 s 1.20313 s 0.859375 s 0.984375 s 0.75 s 0.5625 s
4 × 4 106.316 s 259.078 s 250.835 s 409.538 s DNF C DNF C 221.875 s C
5 × 5 C C C C C C C C C C

Table 7.2: Tictactoe Verification Times for the CTL properties verified using SMV

Counterexample Property
Trace 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze

3 × 3 N/A Full Full Full N/A No No No N/A N/A
4 × 4 N/A Full Full Full DNF C DNF C Full C
5 × 5 C C C C C C C C C C

Table 7.3: Tictactoe Counterexample Trace Results for the CTL properties verified using SMV

State Variable Property
Count 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze

3 × 3 23 23 23 23 23 23 23 23 23 23
4 × 4 37 37 37 37 DNF C DNF C 37 C
5 × 5 C C C C C C C C C C

Table 7.4: Tictactoe State Variable Counts for the CTL properties verified using SMV

Notes:

“DNF” Did Not Finish: SMV was stopped when paging of memory started to take place and the processor

was spending approximately 0% working on SMV verification.

“C” Crashed: SMV crashed with an exception during verification.



7.6 Conclusion 103

µcke Results

Verification Property
Result 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze
3 × 3 TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
4 × 4 TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
5 × 5 TRUE FALSE FALSE DNF FALSE DNF DNF DNF DNF DNF
6 × 6 DNF DNF DNF DNF DNF DNF DNF DNF DNF DNF

Table 7.5: Tictactoe Verification Results for the µ-calculus properties verified using µcke

Verification Property
Time 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze

3 × 3 0.22 s 0.21 s 0.19 s 0.21 s 0.19 s 0.22 s 0.25 s 0.25 s 0.25 s 0.18 s
4 × 4 7.79 s 2.11 s 2.86 s 23.2 s 2.13 s 21.1 s 45.5 s 44.0 s 44.1 s 24.9 s
5 × 5 284 s 390 s 403 s DNF 403 s DNF DNF DNF DNF DNF
6 × 6 DNF DNF DNF DNF DNF DNF DNF DNF DNF DNF

Table 7.6: Tictactoe Verification Times for the µ-calculus properties verified using µcke

Notes:

“DNF” Did Not Finish: µcke was stopped when paging of memory started to take place and the processor

was spending approximately 0% working on µcke verification.

7.6 Conclusion

In this chapter we have shown how tictactoe can be modelled, specified using temporal logics such

as CTL and µ-calculus , and verified using symbolic model checking. To do so we have utilised two

model checkers and employed different board sizes. We have also presented the results we have

obtained. In the next chapter we will consider how model checking may be applied to another

game: connect four.



CHAPTER 8

CASE STUDY 2: CONNECT FOUR

Please don’t ask me what the score is,

I’m not even sure what the game is.

Ashleigh Brilliant

8.1 Overview

This chapter follows in the same pattern as the previous one by first introducing the game at hand,

connect four. We then explain how the game may be modelled by means of a Kripke structure.

Specification of the game is again done by a number of properties in both CTL and µ-calculus. We

make use of SMV and µcke to verify these properties on the game by taking into consideration

different board sizes.

8.2 Game Rules

8.2.1 Introduction

Connect four is a two player game which is very similar to tictactoe. The players are once more

designated using two different markers, traditionally using yellow and red or any other varia-

tion such as black and white. The typical game board consists of a matrix of forty-two locations

arranged in seven vertical columns of six locations each, as shown in Figure 8.1. The board can
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Figure 8.1: A standard 7× 6 connect four board

Figure 8.2: Example moves in a 7× 6 connect four board

however be of any size with the minimum board size being 4× 4.

The rules of a valid connect four game are as follows:

1. The two players take turns to fill the locations on the board.

2. In each turn a player chooses a column of locations and puts his marker in the lowest avail-

able location in that column such that as the column is filled up it resembles a stacked pillar

of markers. No empty locations may be left between filled locations and the former exist

only at the top of the column unless the column has been completely filled up.

3. Once a location has been marked its marker cannot be changed in a subsequent turn.

The first player to produce a row of four of their own symbols either horizontally, vertically or

diagonally wins the game. In order to do so, like in tictactoe, they must make strategic moves in
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Figure 8.3: Example winning boards in a 7× 6 connect four board

Figure 8.4: Example draw boards in a 7× 6 connect four board

order to increase their advantage over their opponent and hence increase their chance of winning.

Two examples of finished games are shown for a 7×6 board in Figure 8.3. The first example on the

left shows black winning horizontally while in the second case white wins by forming a diagonal

of markers.

The game can also end in a draw game. This occurs when the board locations are all filled by

markers before any of the two players completes a set of four markers. Two examples of such

cases are shown for a 7× 6 board in Figure 8.4.

8.3 Modelling Connect Four

As we shall see in this section, modelling connect four is quite similar to any other board game. In

fact it differs from tictactoe’s model mainly due to the different playing rules which translate into

a different transition relation as we shall see later on.
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8.3.1 Game State

Once more we first introduce how the states of our Kripke structure will be defined prior to de-

scribing the structure itself. It is important to notice that although we assume a connect four board

size of 4× 4, it is possible to generalise our model for a m× n board.

Our game state for connect four will have the same structure as that used for tictactoe, that is it

will hold a number of board location variables (4 × 4 in our case) and a variable to represent the

current player turn. By providing a value to each of these variable we will know the state of the

game at a particular point in time.

We will formally define the connect four game state as

s = (locs, turn)

where,

– locs is the set of sixteen board location variables. Again we denote each of these vari-

ables with locsi where i ranges from 1 to 16 (m × n for a generic connect four). The type

of these variables consists of three values: empty, player1 and player2 which refer to an

empty board state, a location marked by Player 1 and a location marked by Player 2, re-

spectively. The domain of each locsi is Db defined earlier as {empty, player1, player2}. The

indexing of the location variables differs slightly from that of tictactoe. In fact for connect

four we will assume that locs1 is situated at the lower left corner location of the board

while locs16 is at the top right corner location of the boar, that is the first row of locations

is locs1, locs2, locs3 and locs4 and the second row on top of it starts at locs5 and so on.

Figure 8.5 shows as a 4 × 4 connect four board and how locs1 to locs16 are positioned on

the board. By a valuation of these variables we can represent the required game board

state as a formula. For example consider the valuation 〈locs1 ← player1, locs2 ← player1,

locs3 ← player1, locs4 ← player2, locs5 ← player2, locs6 ← player2, locs7 ← empty,

locs8 ← empty, locs9 ← empty, locs10 ← empty, locs11 ← empty, locs12 ← empty, locs13 ←

empty, locs14 ← empty, locs15 ← empty, locs16 ← empty〉 represented using the formula:

(locs1 = player1) ∧ (locs2 = player1) ∧ (locs3 = player1) ∧ (locs4 = player2) ∧ (locs5 =
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Figure 8.5: The positioning of locs variables in a 4× 4 connect four board

Figure 8.6: This is the board state represented by the formula (locs1 = player1)∧(locs2 = player1)∧
(locs3 = player1) ∧ (locs4 = player2) ∧ (locs5 = player2) ∧ (locs6 = player2) ∧ (locs7 = empty) ∧
(locs8 = empty) ∧ (locs9 = empty) ∧ (locs10 = empty) ∧ (locs11 = empty) ∧ (locs12 = empty) ∧
(locs13 = empty)∧ (locs14 = empty)∧ (locs15 = empty)∧ (locs16 = empty). Player 1 is represented
by the white marker while player 2 is represented by the black marker.

player2)∧(locs6 = player2)∧(locs7 = empty)∧(locs8 = empty)∧(locs9 = empty)∧(locs10 =

empty)∧(locs11 = empty)∧(locs12 = empty)∧(locs13 = empty)∧(locs14 = empty)∧(locs15 =

empty)∧(locs16 = empty). This formula in terms of the location variables describes the game

board state shown in Figure 8.6. In the figure, Player 1 is represented by white markers while

Player 2 is represented by black markers.

– turn is the variable representing the current game state’s turn, that is the player who will

make the next move. Since a game session’s turn alternates between the two players, the

domain of turn is the set Dt defined as {player1, player2}. Again we assume that if in the

current game state it is Player 1’s turn to make a move, the location variables which reflect

this are the ones of next game state and not of the current one.

An example of a possible game state is

(locs1 = player1) ∧ (locs2 = player1) ∧ (locs3 = player1) ∧ (locs4 = player2) ∧

(locs5 = player2) ∧ (locs6 = player2) ∧ (locs7 = empty) ∧ (locs8 = empty) ∧

(locs9 = empty) ∧ (locs10 = empty) ∧ (locs11 = empty) ∧ (locs12 = empty) ∧
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Figure 8.7: Some illegal board configurations in a 4× 4 connect four board

(locs13 = empty) ∧ (locs14 = empty) ∧ (locs15 = empty) ∧ (locs16 = empty) ∧

(turn = player1).

8.3.2 Game Model

We now describe the Kripke structure used to model a 4 × 4 connect four. The structure can be

described using the usual four-tuple which consists of the state space S, a set of initial (valid) states

S0, a transition relation R and a labelling function L. Formally

Gcf = (S, S0, R, L)

where,

– S = D16
b ×Dt.

Again the power of 16 signifies the produce of Db sixteen times, generalised to m×n times for

an m× n connect four. This results in a state space of 316 × 2 = 86093442 states (3m×n × 2 for

a generic connect four board size). As with tictactoe, some of these states are invalid as they

are not achievable during game play which follows the game rules. Some invalid connect

four game states are shown in Figure 8.7.

– S0 = {(empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,

empty, empty, empty, empty, empty, player1)}.

This is the initial board state which represents the game starting with an empty board. We

again assume that Player 1 always makes the first move. A with tictactoe, whether Player 1

or Player 2 makes the first move is inconsequential.

– R = {((empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,
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empty, empty, empty, empty, empty, player1),

(player1, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,

empty, empty, empty, empty, empty, player2))

((empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,

empty, empty, empty, empty, empty, player1),

(empty, player1, empty, empty, empty, empty, empty, empty, empty, empty, empty,

empty, empty, empty, empty, empty, player2))

((empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,

empty, empty, empty, empty, empty, player1),

(empty, empty, player1, empty, empty, empty, empty, empty, empty, empty, empty,

empty, empty, empty, empty, empty, player2))

((empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,

empty, empty, empty, empty, empty, player1),

(empty, empty, empty, player1, empty, empty, empty, empty, empty, empty, empty,

empty, empty, empty, empty, empty, player2))

. . .

((player1, player1, player1, player1, player2, player2, player2, empty, empty, empty, empty,

empty, empty, empty, empty, empty, player2),

(player1, player1, player1, player1, player2, player2, player2, empty, empty, empty, empty,

empty, empty, empty, empty, empty, player2))}

The transitions of R are based on the game rules and progress the game from one valid state

to another valid one. As examples consider the first and the last transitions in the set shown

above. The first transition shows Player 1 picking the first board location, locs1. The last

transition shows a case where Player 1 has won causing the transition to lead from an end-

game state to itself.

– L((empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,

empty, empty, empty, empty, player1)) =

{locs1 = empty, locs2 = empty, locs3 = empty, locs4 = empty, locs5 = empty,

locs6 = empty, locs7 = empty, locs8 = empty, locs9 = empty, locs10 = empty,

locs11 = empty, locs12 = empty, locs13 = empty, locs14 = empty, locs15 = empty,
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locs16 = empty, turn = player1},

L((player1, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,

empty, empty, empty, empty, player2)) =

{locs1 = player1, locs2 = empty, locs3 = empty, locs4 = empty, locs5 = empty,

locs6 = empty, locs7 = empty, locs8 = empty, locs9 = empty, locs10 = empty,

locs11 = empty, locs12 = empty, locs13 = empty, locs14 = empty, locs15 = empty,

locs16 = empty, turn = player2}, . . .

The labelling function performs the same function as with any modelled system. It allows

us to distinguish each of the different states of the state space by means of their label which

consists of the atomic propositions true in that state.

8.3.3 End-Game Definitions

In this section we present the end-game definitions for connect four which are similar to the ones

for tictactoe mentioned earlier and are also defined in terms of the board locations variables. Re-

spectively these define when: the board is full, Player 1 has won, Player 2 has won, the game is a

draw or the game has ended:

board full
def=

∧16
i = 1(locsi 6= empty)

winner player1 def=

[(locs1 = player1) ∧ (locs6 = player1) ∧ (locs11 = player1) ∧ (locs16 = player1)] ∨

[(locs13 = player1) ∧ (locs10 = player1) ∧ (locs7 = player1) ∧ (locs4 = player1)] ∨

(
∨

i = 1, 5, 9, 13[(locsi = player1)∧ (locsi+1 = player1)∧ (locsi+2 = player1)∧ (locsi+3 = player1)])∨

(
∨

i = 1, 2, 3 ,4[(locsi = player1) ∧ (locsi+4 = player1) ∧ (locsi+8 = player1) ∧ (locsi+12 = player1)])

winner player2 def=

[(locs1 = player2) ∧ (locs6 = player2) ∧ (locs11 = player2) ∧ (locs16 = player2)] ∨

[(locs13 = player2) ∧ (locs10 = player2) ∧ (locs7 = player2) ∧ (locs4 = player2)] ∨

(
∨

i = 1, 5, 9, 13[(locsi = player2)∧ (locsi+1 = player2)∧ (locsi+2 = player2)∧ (locsi+3 = player2)])∨

(
∨

i = 1, 2, 3 ,4[(locsi = player2) ∧ (locsi+4 = player2) ∧ (locsi+8 = player2) ∧ (locsi+12 = player2)])

draw game
def= (¬winner player1) ∧ (¬winner player2) ∧ draw game

end game
def= winner player1 ∨ winner player2 ∨ board full
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8.3.4 Game Computation Tree

The computation tree of the Kripke structure which models our game of connect four has a sur-

prising much different structure than that of tictactoe, even though the two games are quite similar

in nature and in goals. Structure-wise the only property they have in common is that like tictac-

toe’s computation tree, connect four’s one is also symmetrical by who makes the first move. This

implies that the computation tree rooted at the initial game state in which Player 1 makes the first

move and the corresponding computation tree rooted at the initial game state in which Player 2

makes the first move are symmetrical and also independent from one another, hence allowing us

to reduce our model by half by writing our model in such a way that we force one of the player to

make the first move (in our case Player 1).

At the first state there are four possible transitions (in case of our 4 × 4 connect four), that is one

of the four possible columns which the player may use to make his move. Each of these possible

initial transitions allow us four possible moves, again, due to the four columns. Hence at each

game state node the computation tree fans our into four possible next state nodes. The growth

is thus exponential (4n) at most states. We use the term most and not all due to the simple fact

that eventually either an end-game state node is reached and hence the computation tree grows

singularly indefinitely (same node repeats itself) or one or more of the columns is full up of markers

and hence in the computation tree’s fanning our factor decreases at this point depending on how

many available columns there are. In the second case, if a fanning out factor of zero is reached it

means that a draw state was reached by the players since there are no more columns in which to

play. This state repeats itself in the computation tree indefinitely as it is another form of end-game

state node. Figure 8.8 shows the initial part of the computation tree for a 4 × 4 connect four in

which Player 1 (black markers) makes the first move.

8.3.5 Game Strategy

For our game strategy we will utilise the same one that we used with tictactoe,that is all of the

columns have the same possibility of being selected by the players to make their moves. To achieve

this non-determinism is used so that all possible combinations of moves are tried out by the model

checker.
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Figure 8.8: Initial part of the computation tree of a 4× 4 connect four board where Player 1 (black)
makes the first move.

SMV Model

As we stated earlier, each of the board location variables ranges over three values, one for when the

location is empty, one for when it is occupied by Player 1’s marker and one for when it is occupied

by Player 2’s marker. Since three values are required they are represented by two Boolean variables

which allow us four values, one of which is thus redundant. In order to remove such redundancy

and hence obtain a smaller state space we have written the SMV model in such a way as to use a

more efficient encoding of the board locations.

The encoding we will use will still consist of columns of board locations. However the locations

in each column are grouped together in twos, starting from the bottom row upwards. In this way

for example, the first location of the first row is grouped with the first location of the second row,

while the first location of the third row is grouped with the first location of fourth row and so on. In

case of an odd number of rows the top row is not grouped but encoded as before. As an example

consider a 4 × 4 connect four using the above grouping as shown in Figure 8.9. The eight dual

locations obtained from the sixteen normal locations are numbered as seen in this figure, using the

same numbering system as before.
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Figure 8.9: Grouping of the board locations of a 4× 4 connect four board.

Figure 8.10: Possible values of dual locations and their codes.

Each of the newly formed dual locations has one of seven possible values which is made up of the

combinations of the values of the two separate locations according to game rules. These combina-

tions are depicted in Figure 8.9. Each of these values is represented by a code, also shown in the

figure. Since now we require to represent a type with seven values (the codes 1 to 7) the number

of Boolean variables required is three (23 = 8) with an extra unused code (8). If we had to use the

original modelling, we would require two Boolean variables per board location due to the fact that

each location has three possible values. This results in four Boolean variables and two extra un-

used codes. Hence using our encoding we reduce the number of Boolean variables by one and also

reduce the redundant values by one. More importantly we reduce our state space considerably.

Consider once more a 4×4 connect four board. Before we needed 32 Boolean variables (16 locations

of 2 Boolean variables each) to represent the board locations. Now using our encoding we require

only two-thirds of that amount, that is 24 Boolean variables (8 locations of 3 Boolean variables

each) for the board locations. This also translates to reducing the state space from 86093442 states

(= 316 × 2) to 11529602 states (= 78 × 2), that is by a factor of almost 7.5.

µcke Model

The µcke model for connect four models the same behaviour as that for SMV, hence the only

difference between the two is the syntax used by the respective language. Again in the µcke models

we managed to abstract away the explicit index operator used in the SMV model hence allowing
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us to produce a slightly smaller model.

8.4 Specifying Connect Four

We will once more make use of a number of CTL and µ-calculus properties to specify connect four.

These properties are almost equivalent to the ones specified for tictactoe in Section 7.4. In fact

some of the properties are identical for both games, while others are altered so that they can be

used to specify properties about connect four similar to the ones for tictactoe. It should also be

noted that the alterations available to the properties written for tictactoe can be applied for the

following properties of connect four as well.

8.4.1 CTL Properties

The CTL properties selected are as follows:

1. AFEndGame
def= AF end game

This property, like the one for tictactoe, checks the game to verify whether all the paths of the game

eventually lead to a state where the end game condition is satisfied.

2. AFPlayer1Wins
def= AF winner player1

This property model checks the game to see if all the computation paths lead Player 1 to win the game

hence checking whether the game is totally biased. Again this is similar to the property for tictactoe

explained previously.

3. Player1StartsP layer1AFWins
def= (turn = player1)⇒ AF winner player1

Here we check whether if Player 1 makes the first move, he/she will always finally win the game. Please

refer to Section 7.4 for more information.

4. Player1StartsSecondColumnPlayer1AFWins
def=

((turn = player1) ∧ (index = 2))⇒ AF winner player1

This property checks whether if Player 1 makes the first move and he/she picks the second column, the

game will always finally end in his favour. As with the tictactoe property similar to this one (see

Player1StartsCentreP layer1AFWins), one of the first possible moves is for Player 1 to put his

marker in the second column. Using this game state this property tries to find out if all game
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sessions lead Player 1 to win. Another possible way to do this is to alter the model slightly and

make the first move always a mark in the second column. In this way there is only one initial move

possible and the model checker verifies the above formula based on this restriction.

5. Player1StartsSecondColumnPlayer2EFWin
def=

((turn = player1) ∧ (index = 2))⇒ EF winner player2

This property compliments the previous one and checks if Player 1 starts play by choosing the second

column, can Player 2 win?

6. Player1ForceWin4Moves
def= EX AX EX AX EX AX EX winner player1

Altered for connect four by using four moves instead of three (as connect four needs four-in-a-

row), here we check whether Player 1 can force a win in four moves starting from any of the initial

states.

7. Player1StartsSecondColumnForceWin4Moves
def=

(((turn = player1) ∧ (index = 2))⇒ EX AX EX AX EX AX EX winner player1)

In this property we once again combine Properties 4 and 6. The property created in this way asks

whether Player 1 can force a win in four moves if he/she starts play with a move in the second column.

8. Player1StartSecondColumnPlayer2ReplyThirdColumnForceWin4Moves
def=

(((turn = player1) ∧ (index = 2))∧

AX ((turn = player2) ∧ (index = 3)))⇒

EX AX EX AX EX AX EX winner player1

This property asks whether if Player 1 starts play in the second column, and Player 2 replies in the third

column, Player 1 can force win the game in four moves. As with the similar tictactoe property, the

model must be altered so that the first and second moves are no longer random. We force the

model to make Player 1’s first move a marker in second column and Player 2’s first move a marker

in the third column. After these moves the locations are selected once more at random. We hence

ask whether it is possible using such two moves, for Player 1 to win with his fourth move.

9. Player1AlwaysF inallyWinBoardConfiguration
def=

AG (board configuration1 ⇒ AF winner player1)

where board configuration1
def=

(locs1 = player1) ∧ (locs2 = empty) ∧ (locs3 = player2) ∧ (locs4 = player1)∧
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Figure 8.11: Board configuration used to verify Property 9 on a 4 × 4 connect four. On the left we
see the single location model where Player 1 is represented by the White marker while Player 2 is
represented by the Black marker. On the right we see the dual location encoding model where the
numbers in the locations refer to the ones in Figure 8.10

(locs5 = player2) ∧ (locs6 = empty) ∧ (locs7 = player2) ∧ (locs8 = player1)∧

(locs9 = player1) ∧ (locs10 = empty) ∧ (locs11 = player1) ∧ (locs12 = player2)∧

(locs13 = player1) ∧ (locs14 = empty) ∧ (locs15 = player2) ∧ (locs16 = empty)

defines a particular game board configuration which we believe is a forced win for Player 1. This

temporal logic formula describes a property which verifies the system to see whether it is true that

if a certain board configuration occurs during gameplay it is the case that Player 1 always eventually wins.

The board configuration is as follows: (player1, empty, player2, player1, player2, empty, player2,

player1, player1, empty, player1, player2, player1, empty, player2, empty), shown in Figure 8.11

(left). Here we have defined the values of the locations in terms of the actual base model with single

locations. However given the encoding used in the model, the formula for board configuration1

using dual locations is (locs1 = 5) ∧ (locs2 = 1) ∧ (locs3 = 4) ∧ (locs4 = 7) ∧ (locs5 = 7) ∧ (locs6 =

1) ∧ (locs7 = 5) ∧ (locs8 = 2) represented by game state encoding (5, 1, 4, 7, 7, 1, 5, 2) as shown in

Figure 8.11 (right).

10. Player1ForceWin2MovesBoardConfiguration
def=

AG (board configuration1 ⇒ EX AX EX winner player1)

where board configuration1 is defined as in the previous property. This property states that it is

true that if a certain board configuration occurs during gameplay (again the previously mentioned board

configuration (player1, empty, player2, player1, player2, empty, player2, player1, player1, empty,

player1, player2, player1, empty, player2, empty)) it is the case that Player 1 can force win the game in

two moves. Hence if this property is true the board state is a winning one for Player 1 and that no

matter what Player 2 does, he/she has already lost the game proving future moves useless.
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8.4.2 µ-calculus Properties

The µ-calculus properties selected are as follows:

1. AFEndGame

def= AF end game (CTL )
def= µZ.(end game ∨AX Z) (µ-calculus )

This property checks whether the game always eventually ends. We require another formula to verify

the above property on our model. This is:

∀s. (start game(s)⇒ AFEndGame(s))

where s is of type Game State and

start game
def=

((turn = player1) ∧

(locs1 = empty ∧ locs2 = empty ∧ locs3 = empty ∧ locs4 = empty ∧

locs5 = empty ∧ locs6 = empty ∧ locs7 = empty ∧ locs8 = empty ∧

locs9 = empty ∧ locs10 = empty ∧ locs11 = empty ∧ locs12 = empty ∧

locs13 = empty ∧ locs14 = empty ∧ locs15 = empty ∧ locs16 = empty))

The formula start game represents the set of initial states. If this property is verified to be true the

game always finally ends with a win for either of the two players or a draw.

2. AFPlayer1Wins

def= AF winner player1 (CTL )
def= µZ.(winner player1 ∨AX Z) (µ-calculus )

This property checks whether Player 1 always eventually wins the game. The required complimentary

formula is:

∀s. (start game(s)⇒ AFPlayer1Wins(s))

where s and start game have the same type and definition as before, respectively. This formula

allows us to check for a basic form of fairness even if it is not unbiased. If this formula is true the

game is useless in terms of interest as all gameplay sessions lead to Player 1 winning.

3. AGIfP layer1StartsSecondColumnAFPlayer1Wins

def= AG (Player1SecondColumn⇒ AF winner player1) (CTL )
def= νZ.(Player1StartsSecondColumnImpliesAFPlayer1Wins ∧AX Z)

(µ-calculus )
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where

Player1StartsSecondColumnImpliesAFPlayer1Wins
def=

Player1StartsSecondColumn⇒ AFPlayer1Wins

and where

Player1StartsSecondColumn
def=

((turn = player2) ∧

(locs1 = empty ∧ locs2 = player1 ∧ locs3 = empty ∧ locs4 = empty ∧

locs5 = empty ∧ locs6 = empty ∧ locs7 = empty ∧ locs8 = empty ∧

locs9 = empty ∧ locs10 = empty ∧ locs11 = empty ∧ locs12 = empty ∧

locs13 = empty ∧ locs14 = empty ∧ locs15 = empty ∧ locs16 = empty))

and AFPlayer1Wins is defined as previously.

This formula verifies the game to check if it is always globally true that if Player 1 starts play in the

second column they always finally win the game. The formula Player1StartsSecondColumn is the

set of states where Player 1 has selected to start the game by dropping his marker in the second

column. The derived formula Player1StartsSecondColumnImpliesAFPlayer1Wins refers to the

states where if Player 1 starts in the second column imply that they will always finally win. Our

final property goes a step further by checking this for all the states of our game system. In order to

verify we require the formula:

∀s. (start game(s)⇒

AGIfP layer1StartsSecondColumnImpliesAFPlayer1Wins(s))

where s and start game have the same type and definition as before, respectively. We hence verify

the property on our system by checking if the latter is true for the set of start state (one state). If

the property is true, Player 1 should always start with the second column so as to ensure they will

eventually win in all cases.

4. AGIfP layer1StartsSecondColumnImpliesEFPlayer2Wins

def= AG (Player1StartsSecondColumn⇒ EF winner player2) (CTL )
def= νZ.(Player1StartsSecondColumnImpliesEFPlayer2Wins ∧AX Z)

(µ-calculus )

where

Player1StartsSecondColumnImpliesEFPlayer2Wins
def=
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Player1StartsSecondColumn⇒ EFPlayer2Wins

where

EFPlayer2Wins

def= EF winner player2 (CTL )
def= µZ.(winner player2 ∨ EX Z) (µ-calculus )

and Player1StartsSecondColumn is defined as before.

This formula complements the previous one by checking whether it is always the case that Player

2 has the possibility of winning if Player 1 starts play in the second column. EFPlayer2Wins refers to

the states where starting from the latter paths exist which finally lead to Player 2’s winning states.

The formula Player1StartsSecondColumnImpliesEFPlayer2Wins is true for those states where

if Player 1 initially plays as mentioned earlier, there exists the possibility that Player 2 wins. The

complete formula checks whether this is true for all the states on all the paths of the model. The

required formula to model check is:

∀s. (start game(s)⇒

AGIfP layer1StartsSecondColumnImpliesEFPlayer2Wins(s))

where s and start game have the same type and definition as before, respectively.

5. AGIfP layer1StartsSecondColumnPlayer2RepliesF irstColumnImpliesAFPlayer1Wins

def= AG (Player1StartsSecondColumnAndP layer2RepliesF irstColumn⇒

AF winner player1) (CTL )
def= νZ.(Player1StartsSecondColumnAndP layer2RepliesF irstColumnImpliesAFPlayer1Wins

∧ AX Z) (µ-calculus )

where

Player1StartsSecondColumnAndP layer2RepliesF irstColumnImpliesAFPlayer1Wins

def= Player1StartsSecondColumnAndP layer2RepliesF irstColumn⇒ AFPlayer1Wins

and where

Player1StartsSecondColumnAndP layer2RepliesF irstColumn
def=

((turn = player1) ∧

(locs1 = player2 ∧ locs2 = player1 ∧ locs3 = empty ∧ locs4 = empty ∧

locs5 = empty ∧ locs6 = empty ∧ locs7 = empty ∧ locs8 = empty ∧

locs9 = empty ∧ locs10 = empty ∧ locs11 = empty ∧ locs12 = empty ∧
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locs13 = empty ∧ locs14 = empty ∧ locs15 = empty ∧ locs16 = empty))

and AFPlayer1Wins is defined as previously. Here we check whether if Player 1 starts in the

second column and Player 2 replies in the first column, Player 1 always finally wins. The formula

Player1StartsSecondColumnAndP layer2RepliesF irstColumn represents the set of states where

Player 1 has started with the second column and Player 2 has replied with the first column. The

formula Player1StartsSecondColumnAndP layer2RepliesF irstColumnImpliesAFPlayer1Wins

refers to the set of states where if the former subformula is true this implies that Player 1 is always

finally the winner. Using our property we can check this for all the states on all the paths of the

system. Moreover, we require the formula:

∀s. (start game(s)⇒

AGIfP layer1StartsSecondColumnPlayer2RepliesF irstColumnImpliesAFPlayer1Wins(s))

where s and start game have the same type and definition as before, respectively.

6. AGIfP layer1StartsSecondColumnPlayer2RepliesF irstColumnImpliesEFPlayer2Wins

def= AG (Player1StartsSecondColumnAndP layer2RepliesF irstColumn⇒

EF winner player2) (CTL )
def= νZ.(Player1StartsSecondColumnAndP layer2RepliesF irstColumnImpliesEFPlayer2Wins

∧ AX Z) (µ-calculus )

where

Player1StartsSecondColumnAndP layer2RepliesF irstColumnImpliesEFPlayer2Wins

def= Player1StartsSecondColumnAndP layer2RepliesF irstColumn⇒ EFPlayer2Wins

This property checks whether it is always the case that if Player 1 starts play in the second column and

Player 2 replies in the first one, there exists a path which eventually leads Player 2 to win.

Player1StartsSecondColumnAndP layer2RepliesF irstColumnImpliesEFPlayer2Wins represents

the set of states where if Player 1 and Player 2 make the previously mentioned moves it is true that

Player 2 may be finally the winner. The full property proves this for all the states of the game

model. We also require the formula:

∀s. (start game(s)⇒

AGIfP layer1StartsSecondColumnPlayer2RepliesF irstColumnImpliesEFPlayer2Wins(s))

where s and start game have the same type and definition as before, respectively.

7. Player1ForceWin
def=
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µZ.(winner player1 ∨ ((turn = player1 ∧ EX Z) ∨ (turn = player2 ∧AX Z)))

This property checks whether Player 1 may force a win in a number of moves starting from a particular

board state. The result of this property shows whether there exist board states where a player may

win no matter what their opponent does. In order to model check this property we require the

formula:

∃s. P layer1ForceWin(s)

where s is of type Game State. Using this formula we check for the existence for such states.

8. Player1CanForceAWinIfStartsSecondColumn

def= Player1StartsSecondColumn ∧ Player1ForceWin

where Player1StartsSecondColumn and Player1ForceWin are defined as before. This property

verifies whether it is possible for Player 1 to force a win in a number of moves if they start play in the

second column. We use the formula:

∃s. P layer1CanForceAWinIfStartsSecondColumn(s)

where s is of type Game State, to check the existence of such states.

9. Player1CanForceAWinIfP layer1StartsSecondColumnAndP layer2RepliesF irstColumn
def=

Player1StartsSecondColumnAndP layer2RepliesF irstColumn ∧ Player1ForceWin

where Player1StartsSecondColumnAndP layer2RepliesF irstColumn and Player1ForceWin are

defined as previously. This shows whether if Player 1 starts play in the second column and Player 2

replies in the first column, Player 1 can force a win in a number of moves. To check this property we

require the formula:

∃s. P layer1CanForceAWinIfP layer1StartsSecondColumnAndP layer2RepliesF irstColumn(s)

where s is of type Game State.

10. Player2MayDraw
def=

µZ.(draw game ∨ ((turn = player1 ∧ EX Z) ∨ (turn = player2 ∧ EX Z)))

This property defines the set of states where Player 2 may attempt to draw the game. We can model

check the game model using this property by means of the additional formula:

∀s. (start game(s)⇒ Player2MayDraw(s))

where s is of type Game State.
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8.5 Verifying Connect Four

Verifying connect four was achieved in the same way as was done for tictactoe. A model generator

was written in C#. This generator is able to automatically create x× y connect four games in both

SMV and µcke syntax allowing us to obtain incrementally larger models. It does so by creating

the start game definition, the transition relation and the end-game definitions. As for tictactoe, the

specifications have to be entered manually as they depend on what the user would like to verify

about the game. In our case we entered the properties mentioned above, making the necessary

modifications for different board sizes. Using the two model checkers the generated models where

then checked to see if they adhered to the specifications.

8.6 Results

Verifying connect four of different sizes using the above specifications has yielded the following

results as shown in the tables in the following pages.
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SMV Results

Verification Property
Result 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze
4 × 4 C C FALSE FALSE C C FALSE FALSE FALSE FALSE
4 × 5 DNF C DNF C C DNF C FALSE C C
5 × 4 DNF DNF C C C DNF DNF DNF DNF DNF
5 × 5 C C C DNF DNF C DNF C C C

Table 8.1: Connect Four Verification Results for the CTL properties verified using SMV

Verification Property
Time 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze

4 × 4 C C 201.484 s 161.625 s C C 283.25 s 26.3281 s 176.141 s 90.3438 s
4 × 5 DNF C DNF C C DNF C 119 s C C
5 × 4 DNF DNF C C C DNF DNF DNF DNF DNF
5 × 5 C C C DNF DNF C DNF C C C

Table 8.2: Connect Four Verification Times for the CTL properties verified using SMV

Counterexample Property
Trace 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze

4 × 4 C C Full Full C C No No Full Partial
4 × 5 DNF C DNF C C DNF C No C C
5 × 4 DNF DNF C C C DNF DNF DNF DNF DNF
5 × 5 C C C DNF DNF C DNF C C C

Table 8.3: Connect Four Counterexample Trace Results for the CTL properties verified using SMV

State Variable Property
Count 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze

4 × 4 C C 27 27 C C 27 27 27 27
4 × 5 DNF C DNF C C DNF C 35 C C
5 × 4 DNF DNF C C C DNF DNF DNF DNF DNF
5 × 5 C C C DNF DNF C DNF C C C

Table 8.4: Connect Four State Variable Counts for the CTL properties verified using SMV

Notes:

“DNF” Did Not Finish: SMV was stopped when paging of memory started to take place and the processor was spending approximately

0% working on SMV verification.

“C” Crashed: SMV crashed with an exception during verification.
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µcke Results

Verification Property
Result 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze 4 × 4 TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
4 × 5 TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
5 × 4 TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
5 × 5 E FALSE FALSE TRUE FALSE TRUE E E E TRUE
5 × 6 DNF DNF DNF DNF DNF DNF DNF DNF DNF DNF

Table 8.5: Connect Four Verification Results for the µ-calculus properties verified using µcke

Verification Property
Time 1 2 3 4 5 6 7 8 9 10

B
oa

rd
Si

ze 4 × 4 2.38 s 0.93 s 1.27 s 1.85 s 1.29 s 1.84 s 2.11 s 2.08 s 2.06 s 1.45 s
4 × 5 41.2 s 31.2 s 35.4 s 37.6 s 35.7 s 37.8 s 106 s 104 s 105 s 29.7 s
5 × 4 102 s 40.6 s 53.4 s 81.4 s 54.6 s 82.3 s 238 s 204 s 210 s 75.1 s
5 × 5 E 1144 s 1512 s 1174 s 1714 s 1156 s E E E 1018 s
5 × 6 DNF DNF DNF DNF DNF DNF DNF DNF DNF DNF

Table 8.6: Connect Four Verification Times for the µ-calculus properties verified using µcke

Notes:

“DNF” Did Not Finish: µcke was stopped when paging of memory started to take place and the processor was spending approximately

0% working on µcke verification.

“E” Error: ABCD BDD package reported that the maximum number of nodes was exceeded.

8.7 Conclusion

In this chapter we have shown how a game such as Connect Four may be modelled using an ap-

propriate modelling structure and how it may be specified using CTL and µ-calculus . Verification

was achieved using the same two model checkers used for tictactoe in the previous chapter. The re-

sults obtained through verification reflect the ability of model checking to scale up to large connect

four board sizes.

In the next chapter we will evaluate the results for both tictactoe and connect four and discuss the

ability of model checking for the verification of games. Moreover we will compare and contrast

model checking with other known forms of game verification methods.



CHAPTER 9

EVALUATION & RELATED WORK

One of the greatest resources people cannot mobilize

themselves is that they try to accomplish great things.

Most worthwhile achievements are the result of many

little things done in a single direction.

Nido Qubein

9.1 Overview

In the previous chapters have seen how model checking may be applied to games and how it

enables us to obtain some interesting results regarding the games’ properties. In this chapter we

will evaluate whether model checking is in fact appropriate for game systems by discussing the

results obtained. We will also compare model checking to other work which has been applied to

games such as theorem proving, minimax analysis, retrograde searching and alpha-beta searching.

9.2 Evaluation of Results

The results we obtained show that model checking may be applied to proving properties about

games. The modelling step was achieved effortlessly because modelling a game reduces to trans-

lating the latter into a Kripke structure. As we have seen this is a fairly straight forward task since

the states of the Kripke structure may be represented by the board state, while the transitions of the
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same structure may be immediately mapped to moves which the game rules allow the players to

perform on the game board. Specification was done by writing the required properties in CTL and

µ-calculus temporal logics. The verification process was accomplished as with any other system

by the use of the SMV and µcke model checkers.

Analysing the results for both games using the two model checkers gives us reason to believe that

although model checking may be utilised for games, the highly combinatorial nature of such sys-

tems causes problems in verification. This can be immediately seen from the results for the two

games verified using both CTL -based and µ-calculus -based model checking. For example, in our

first experiment for tictactoe with SMV the properties were verified quickly (1.25 seconds or less)

for a small board of 3 × 3. However, a slight increase of the board size to 4 × 4 caused a drastic

increase in verification time with some properties failing to verify altogether due to system limita-

tions. Considering that the increase in state variable count is just fourteen (23 for 3× 3 tictactoe to

37 for 4× 4 tictactoe) we believe that with some minor modifications to the model written in SMV

we may achieve better results. For example, a simple encoding which groups the columns of the

tictactoe board as one unit, instead of just separate board locations allows for fewer state variables

and may contribute to better overall results. The only problem with this encoding is the complex-

ity in creating an n× n generator for different board sizes as we required. We have proposed and

used a similar encoding for connect four to the one suggested for tictactoe which however groups

every two board locations in a column. The results for this game have in fact been more favourable

considering that its smallest board size is still larger than the smallest tictactoe board. Thanks to

our encoding the initial state variable count for a 4×4 connect four was reduced from 37 to 27 vari-

ables allowing for larger board sizes to be model checked. Another available option which could

possibly allow us to model check larger board sizes is to try to use state space reduction techniques

such as abstraction, symmetry and induction (see [20] for more information on these subjects). Of

these we believe that symmetry might be the most appropriate. As an example consider how in

3× 3 tictactoe all the four corners may be mapped to one another allowing us to consider just one

corner. If this is applied to the centre location and the side locations, we could in fact just model

check the games for three types of locations instead of nine separate ones. The only problem with

this reduction technique is related to its ability to scale up and the complexity in writing an n× n

model generator. It is still however an interesting area of study to see how model checking and
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symmetry behave for game systems.

Hence, on the whole our results reflected the fact that since board size is the major contributor to

the size of the state space, the larger the board size the longer the time for verification and the lesser

the chance of verification success. As another example consider the verification times for connect

four verified using µcke. We notice how for a 4 × 4 board size the verification times ranged from

a meagre 0.97–2.38 seconds up to a maximum of almost half an hour for a board size of just 5× 5.

On first inspection one might think that our systems are suitable for the MBFS used in SMV and

µcke allowing for short verification times even for larger board sizes than 5× 5. The computation

trees of our game systems are more inclined towards breadth rather than length due to the fact

that initially the board allows for a maximum number of moves which decreases gradually hence

allowing the tree to spread out quickly at first and starting to taper on most paths. Moreover, the

length of the deepest path is at most the size of the board itself. This contrasts with other games

such as chess and checkers where loops exist in the model of such games because a some moves

may be reversed and redone for example. In fact for small board sizes model checking was quite

successful as we mentioned earlier. Problems however arose as the depth was increased. In all

cases a small increase in depth has cased a significant toll on model checking times. For example:

an increase of depth 7 from a tictactoe maximum depth of 9 for 3 × 3 to a maximum depth of 16

for 4 × 4 has almost doubled the depth of the computation tree. This fact is clearly reflected in

the difference in verification times for these two board sizes. The impact is less noticeable for the

board sizes of connect four due to the smaller increments in board size.

Overall, if we compare the results for tictactoe and connect four for both SMV and µcke we realise

that µcke has provided us with better results than SMV. The reasons for this could be numer-

ous. The OBDD libraries for SMV and µcke might have different implementations related to how

variable orderings are chosen which could cause performance differences between the two model

checkers. Since we are dealing with OBDDs different variable orderings might cause a great im-

pact on verification time. The results seem to suggest that µcke’s variable ordering is more suited

for games than SMV’s. A slight extension to our work would be to provide pre-defined variable

orderings for both model checkers which might be more suitable for our systems hence allowing a

better comparison. It might also however be the case that the state space of our games themselves

represent a difficult case for the OBDD representation in a similar fashion to the difficulty this rep-
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resentation has with the representation of integer multiplication as seen in [11]. It would be an

interesting extension to our work to see how other representations besides OBDDs, such as SAT-

based, fair with game systems. Another reason which could have lead to the discrepancy between

the two model checker’s results relates to the fact that CTL -based model checking is iterative in

nature and a considerable number of intermediate steps are required to model check a system

through CTL especially if we have a substantial number of nested temporal operator pairs. These

operator pairs have to be worked out one at a time starting from the inner formula and expanding

outwards until the entire formula is model checked. The µ-calculus model checking on the other

hand does not behave in this manner. The fixpoint representation of formulas allows us to express

most properties using one recursive definition even if in CTL they involve a lot of nesting. Hence

for most properties written in µ-calculus there are no subformulas to be worked out before the

final property may be verified allowing perhaps verification to be much quicker and available for

larger board sizes.

An important thing to notice about our model checking results is that properties which involve

existential quantification or alternating path quantifiers are problematic when model checking

games. In fact for tictactoe using SMV we encountered our first problem verifying properties

when we attempted to verify that there exist paths which allow Player 2 to win if Player 1 starts

gameplay in the centre location. Moreover, the properties which checked for the existence of force

win states using alternating path quantifiers for Player 1 both unrestricted or restricted to for ex-

ample starting in the centre location, have failed to verify for quite a small tictactoe board size.

This is also the case for µcke results, this time for a board size of 5× 5. Connect four results follow

in the same manner for SMV and µcke. The difference in the model checkers and hence the type

of model checking is again shown here. The µ-calculus model checker behaves as we observed

for connect four as it did for tictactoe. It found some problems when model checking properties

involving existential quantifiers and alternating path quantifiers. In fact the first problems where

encountered when attempting to verify properties involving alternating path quantifiers for this

game. SMV’s results for connect four behave in a slightly different manner. While a property for

unrestricted forced winning did not verify, attempting to verify properties related to forced wins

restricted to a certain initial moves was successful, at least for the smallest board size of 4 × 4.

These results seem two suggest two things:
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• It would be interesting to know how ATL compares to both CTL and µ-calculus as this tem-

poral logic has been specifically created for alternating path quantifiers. Writing properties

in ATL and model checking them with an appropriate model checker such as Mocha should

be an interesting way to compare the three temporal logics and moreover to attempt to deter-

mine which temporal logic is more suited for games. As we mentioned earlier CTL is not able

to express certain properties about games. We may find whether ATL is enough or whether

µ-calculus is still required for game systems.

• SMV’s results for connect four seem to suggest that perhaps larger board sizes may be model

checked if we write a number of different models for every board size, where each model

differs from the other by where Player 1 does their first move. It should be then possible to

combine the results together for all the separate models for the result of the actual model.

Another minor observation related to connect four is that our results indicate that a 4×5 board size

is clearly different from a 5× 4 board size even if the number of board locations is 20 in both cases.

This can be deduced from the verification times which indicate that µcke took longer to model

check the 5 × 4 board size than the 4 × 5 one. The factors leading to this could be numerous as

the two board sizes’ state space, transition relation and computation tree’s overall structure differ

completely from one another even if they share the same amount of locations and computation

tree maximum depth. A more thorough comparison can be attained if we manage, in future work,

to verify larger cases in both SMV and µcke.

As we have stated earlier in Chapter 3, temporal logics have different expressiveness depending

on their definition. This translates to what properties they can express about a particular system.

A part of our study was concerned with comparing two such key temporal logics: CTL and µ-

calculus . We wanted to know whether CTL is enough to express all the properties one would like

to verify on game systems or whether such a temporal logic restricted us by what it can express.

We have seen through some of the properties we have written that some properties in µ-calculus

cannot be expressed by CTL . An example of this are the formulas which relate to forced wins.

It was found impossible to write CTL formulas which allowed us to check whether a player may

force win a game in an unpredetermined number of moves. CTL limited us to write properties

with a preknown, fixed number of moves while µ-calculus allowed us to remove this upper limit.

As an example of this consider the µ-calculus formula:
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Player1ForceWin
def=

µZ.(winner player1 ∨ ((turn = player1 ∧ EX Z) ∨ (turn = player2 ∧AX Z)))

This generic formula allowed us to model check both tictactoe and connect four for the states where

Player 1 can force a win given any number of moves by the player. The closest we can obtain to

this in CTL is

Player1ForceWin5Moves
def=

EX AX EX AX EX AX EX AX EX winner player1

written specifically for a 3 × 3 tictactoe. As we can see the number of forced moves is fixed to

five. In order to write something remotely similar to the above µ-calculus formula we would have

to model check five formulas with one move, two moves and so on, separately and somehow

combine the results. Still however we are encumbered with the fact that we must provide the

upper limit ourselves.

One final, minor observation is related to counterexample and witness traces. A full model check-

ing counterexample or witness trace in our case provides us with a complete game session. This

is very useful when verifying games as it allows us to find moves and even detect playing strate-

gies for a particular game. Unfortunately counterexample and witness traces are hard to obtain

for some of the most important properties we attempted in our study. An example of this is once

more the forced win properties. Alternating path quantifiers cause problems for counterexam-

ple/witness trace-generating algorithms.

9.3 Related Work

The study of game systems has always been an integral part of computer science. In fact many

techniques have been put to use to discover properties about them. They provide us with inter-

esting case studies for many other areas and allow us to understand better the intricacies of the

computing machines we make use on a daily basis. The technique we have put to use, model

checking, is just one of many which have been used, including theorem proving, minimax anal-

ysis, retrograde search and alpha-beta search, amongst others. All of these have produced some

interesting, sometimes surprising, results about games.

Theorem proving [20] has been used for various game systems including chess [32]. As a technique
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it is similar to model checking in the sense that it views a game as a system of equations. These

equations follow strictly the game rules themselves (such as for example how a piece may move)

and are applied on the current state of the game to produce a number of possible next states.

Theorem proving has allowed researchers to create what are known as endgame databases. These

databases store all the sequences of all the moves which may originate from a particular board

configuration [32]. In [32] Hurd discusses this subject matter. His work is related to ours due

to the use of BDDs which he employes with the HOL4 theorem prover to construct an endgame

database for all the four piece pawnless positions possible of chess. As with our case, BDDs help

him produce compact representations of the states of the game, in similar way to how we represent

sets of states from our game model’s state space using OBDDs. Also by means of his work he has

found which states consisting of a small number of end pieces are force win ones for a player. We

attempted to obtain these states as well by the use of the forced win µ-calculus formula mentioned

earlier.

Min-max or minimax analysis [30] is a form of search whereby each node in the computation tree

is given a value depending on how profitable it is for the player if he/she is in that particular

state. The value of each node is determined by a heuristic evaluation function. The search al-

gorithm attempts to always pick the most profitable state of those available for a player thereby

maximising the chance of him/her winning and subsequently attempting to minimise the chance

of a favourable outcome for the opponent. To do so a search is done and if in the available nodes it

is the player’s turn to move, the maximum value node is selected, while if it is the opponent’s turn,

the node with the minimum value is taken as a move. The maximum value node is taken in the

player’s turn because it reflects that the player is trying to maximise their chance of winning while

the minimum value node is taken for the opponent’s turn because it reflects that the opponent is

also trying to win for themselves [30]. Minimax has been applied for various games, as it can be

used to attempt to find the best gameplay possible for a player playing a particular game. A form

of minimax has been used by Victor Allis to solve the game of connect four which was found out

to be a win for Player 1 if perfect play is employed [1]. If we compare minimax analysis to model

checking we see that they are both exhaustive in nature, that is, all paths are considered thoroughly.

However, while minimax gives weights to paths according to perceived notions by the researcher,

thus preferring some paths over others to reach its required states and potentially ignoring certain
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paths which could turn out to be advantageous, model checking is less forgiving as it attempts all

the paths equally unless it is restricted otherwise. Compared to minimax, model checking is more

thorough and takes no chances. Minimax has however been used with considerable success due

to its practical approach.

Two important search techniques (often employed with minimax analysis) which have been used

for games are those of retrograde search and alpha-beta search [41]. In retrograde search we start

from a goal state we want to reach, such as for example a forced win state for a player, and we

work backwards by means of depth first search tree to find which states may lead us to such a

desired state. This fact makes retrograde search a form of backwards search in the computation

tree. Alpha-beta search on the other hand is the opposite of retrograde analysis. It starts from

a start state an finds which moves lead to a winning state by means of a depth first search on

the search tree. Combining these two techniques provides with the advantages of both together.

Simplistically, alpha-beta is used to start searching from the start state while in parallel retrograde

analysis works in reverse from the desired state until there is a meeting point at a particular level

of depth for both. These two techniques have been applied separately and together to study and

solve various games, often with success. An example of this is the work by Gasser who showed

how using retrograde and alpha-beta he can solve a game called nine men’s morris [29]. His results

show that the game is in fact a draw. More recently (2007) checkers has been solved as a draw in a

similar manner by a team consisting of Schaeffer et al. [41], again using the same two techniques.

Their approach using these two techniques has some similarities and differences to our work. In

contrast to these two techniques, as we mentioned earlier, model checking utilises a breadth first

search instead of a depth first search. However both techniques involve a search of all the required

paths which meet specification, such as “the states where Player 1 can force a win”. Due to its

forward search method, our model checking approach to games may be seen to resemble alpha-

beta searching which Gasser and Schaeffer et al. use more than it does with their use of retrograde.

Both model checking and alpha-beta, when used with games start from a initial board location

and work onwards until they find the required board states which they want. Also it is obvious

that in our approach to game verification we did not use backwards searching techniques such as

retrograde as this is not used in model checking.

During the course of this body of work, we came across a paper by Zheng Zhang which discusses
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how model checking may be used to verify properties about a 3×3 tictactoe [43]. Zhang attempts to

model check a property for the states which are forced wins for a tictactoe player using bounded

CTL , ATL and µ-calculus. He successfully manages to use SMV to verify this property for CTL

whilst failing in his attempt with µcke (as we did at first) and mocha which he wished to use for the

other temporal logics. Our work can be seen as an extension of Zhang’s work as our approaches are

very similar to each other. We however extend more on Zhang’s work by checking more properties

and attempting larger board sizes for both tictactoe and connect four.

Another paper which describes work related to our own is by Madhusudan et al. [36]. In [36]

Madhusudan et al. take a more generic approach than ours and although they consider symbolic

model checking as a technique to solve certain simple games which they call Pursuit-Evasion and

Swap and extract properties about them, they also discuss other symbolic methods, of note being

the SAT-based symbolic technique and ATL model checking. Similarly to us they use µcke and

have also tried board sizes of varying sizes. Their results which concern the use of BDDs compare

to our results by the fact that with increasing board sizes, symbolic model checking techniques

suffered, sometimes not managing to finish after a considerable amount of verification time.

9.4 Conclusion

In this chapter we have evaluated our results and what they reflect on model checking when ap-

plied to games. All things considered, our results show that we were successful in what we set

out to do. Model checking is a reasonable technique to deduce properties about games and with

some further work and improvements it may even become comparable to the other methods we

mentioned earlier. In the next chapter we will discuss any potential research areas which stem

from our work and give our final conclusions regarding our research.



CHAPTER 10

FUTURE WORK & CONCLUSION

I never think of the future.

It comes soon enough.

Albert Einstein

10.1 Overview

In this chapter we will examine some possible future work which may be derived from our study

and present our final remarks and conclusions.

10.2 Future Work

Our results suggest that standalone symbolic model checking is a bit limited when trying to prove

properties about games. To mitigate this problem we have made use of suitable encodings. This

however is not always enough since there are scaling problems involved and the complexity of the

model written for the model checker makes the former hard to write. A new study could be carried

out to find out if an existent state space reduction technique may me used to help mitigate the state

space explosion problem. For example, we believe that despite the fact that it might make model

writing for a model checker harder, symmetry is a viable technique which could substantially

reduce our models and enable us to check larger board sizes. Induction on the board size may

also be perhaps attempted. If no existent technique is found to satisfy our needs, perhaps the
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study carried out could attempt at discovering a technique which is domain specific for the model

checking of games.

As suggested by Zhang’s [43] and Madhusudan et al.s’ [36] work and our study, an interesting

extension of our work would be to utilise ATL model checking for games. A similar study to ours

but which includes ATL would allow us to contrast and compare ATL with CTL and µ-calculus in

relation to game systems. We can once more, for example, find out if ATL is enough or whether µ-

calculus is still required to prove certain properties about games. ATL is seen as a good candidate

since games can be seen as an instance of one of the classes of systems it was specifically designed

for. Moreover, alternating path quantifiers which we often make use of whilst proving our prop-

erties about games seem to be quite heavy for CTL model checking. It would be interesting to see

how ATL model checking is able to scale up for larger board sizes even though it makes use of

alternating path quantifiers.

In our study we focused on symbolic model checking based on binary decision diagrams. It would

be interesting to compare BDDs with other symbolic techniques such as SAT-based model checking

in a similar fashion to Madhusudan et al.s’ work. Model checkers like NuSMV which support both

OBDD- and SAT-based algorithms may allow us to compare the two’s different verification times

when applied to verifying properties about games.

Using model checking it is possible to extend our work to carry out a study on game strategies

and their impact upon a particular game. In our work this subject matter was broached briefly and

we saw how strategies can be included either through properties or by means of a change in the

model itself as part of the transition relation. Model checking may be used to attempt to find the

success rates of possible gameplay strategies. An example of this is the strategy used for “perfect”

gameplay, which when found about a particular game, allows us to find out whether an opponent

may always draw the game, making thus the game fair, or whether it is biased towards a player.

10.3 Conclusion

Despite initial problems we had due to the lengthy verification times for even some of the smaller

board sizes, the overall result was positive and we achieved what we set out to do. We managed to

apply model checking to game systems and have used it to verify a number of properties about two
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commonly-played games, tictactoe and connect four using SMV for CTL verification and µcke for

µ-calculus verification. Moreover since the properties were written in both CTL and µ-calculus we

were able to see if CTL was capable enough alone to express any required game-related property.

As we have seen this is not the case as it cannot be used to write some very important properties.

Another factor we studied was scalability. We believe that with a little more work and improve-

ment model checking may be used to study games with larger board sizes such as for example the

standard 7×6 connect four which managed to elude us and perhaps with time and research, other,

more complex games such as checkers and chess. Eventually model checking might be added to

the current collection of tools used to study games as another, viable approach.



APPENDIX A

GAME MODEL GENERATOR TOOL

We shall neither fail nor falter; we shall not weaken

or tire...give us the tools and we will finish the job.

Winston Churchill

A.1 Overview

This appendix is dedicated to the game model generator we wrote as a tool to help us with our

study. The model generator was written in .Net 2.0 using the C# language. It is able to create

models of tictactoe and connect four of size up to 9×9 which may be model checked with SMV and

Mucke. The script generated is correct in terms of the two model checkers’ syntax language and

only requires the specification properties to be added after generation is complete. This is possible

through a basic editor which forms part of the tool itself. After the model has been generated and

the specifications added, the tool allows the user to save the script file in a format which may be

immediately used by the respective model checker.

A.2 Aim

The aim behind our tool is to assist us in getting an indication of the scalability of model checking

with game board size. Since using our encodings, creating a 3 × 3 game model for both games is

the same as creating one for a 4× 4, 5× 5 and so on, we decided to automate the task.
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Figure A.1: Game Model Generator Tool Main Window

A.3 Options

The program consists of a main window and a help window. The main window is divided into

seven sections as shown in Figure A.1. The sections are:

Main Options Menustrip

This section contains:

• Menu Options which give the user the option to create, open, save, print preview and print

model files.

• Editing Options such as undoing, redoing, cutting, copying and pasting.

• Game Parameter Options such as game type, model checking language, player identifiers,

board size and model generation.

• Editor Options related to what panels of the interface are hidden or visible and word warp.

• Help on the use of the model generator.
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Main Options Toolstrip

This section replicates some of the common options from the Main Options Menustrip for easy,

one-click use. Options available are:

• creating, opening, saving, print-previewing and printing game model files

• cutting, copying, pasting text from a model file

• help on the use of the model generator

• exiting the model generator

Game Settings Panel

This panel allows the user to edit the game model parameters prior model generation. Parameters

available are:

• Game Type — Select between Tictactoe and Connect Four.

• Model Checker — Select between SMV and Mucke model checker.

• Players — Player 1 and Player 2 identifiers may be entered here.

• Board Size — Enter the size of the board game. The size of the sides of the board for Tictactoe

ranges from 3 to 9 while that for Connect Four ranges from 4 to 9. Note also that Tictactoe’s

board size is restricted to grow only in a square fashion.

General Options Panel

This panel allows the user to:

• Load a Model in both Mucke or SMV using a Load File Dialog.

• Save a Model as a Mucke Model or SMV Model or a generic text format using a Save File

Dialog.

• Generate a Model using the game parameters set up before in the Game Settings Panel. The

newly generated model appears in the Editing Panel.
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Figure A.2: Game Model Generator Information Panel History Tab Window

Editing Panel

The Editing Panel consists of a basic editor which has the following options:

• Displays a generated model.

• Allows editing of the generated model.

• Allows the addition of specification properties before the model is saved for use with the

appropriate model checker.

Information Panel

The Information Panel is divided into two informative tabs:

History — displays model generation history. As an example see Figure A.2.

Errors — displays any errors which may occur prior generation. The errors handled are:

• One or both of the players’ identifiers are missing.
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Figure A.3: Game Model Generator Information Panel Errors Tab Window

• Identifier(s) entered is incorrect according to the model checker. Identifiers should start with

an alphabetic character or underscore and proceed with an alphanumeric character or un-

derscore.

• Identifier(s) entered is a model checker language reserved word.

• Identifier(s) cannot be the same.

As an example consider Figure A.3.

Status Strip

This is a status bar which displays information of immediate attention to the user. Examples of

status messages are:

• Whether the tool is ready for model generation.

• Whether errors were found which do not allow model generation to occur.

• The current step being performed during model generation, such as generation of definition

of the initial states or the transition relation.

• Whether model generation was completed successfully.

A.4 User Manual

A.4.1 Generating a new Game Model

To generate a model one must follow the following steps:
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1. Select the Game Type (Tictactoe or Connect Four).

2. Select the Model Checker (SMV or µcke).

3. Enter two variable names, one for each player.

4. Select the board size required.

5. Generate the Model by clicking on the Generate Model Button.

6. Enter the specification properties required where suggested in the generated script.

7. Save the script.

8. Use SMV or µcke to run the script depending on the Model Checker selected in 2.

A.5 Contents of CD–ROM

The cd-rom contains:

• The Visual Studio .Net 2005 project and source code

• The tool executable

• The generated scripts we used to verify the games

• A soft copy of this document.
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